put changes on algorithm from geom_fromEuclideanDistance into addEuclideanDistance

This commit is contained in:
Martin Diehl 2015-02-07 17:11:46 +00:00
parent f3bab46275
commit e4a94aa72b
2 changed files with 36 additions and 31 deletions

View File

@ -1,10 +1,10 @@
#!/usr/bin/env python
# -*- coding: UTF-8 no BOM -*-
import os,sys,string
import os,sys,string,re,math
import numpy as np
from optparse import OptionParser
from scipy import ndimage
from optparse import OptionParser
import damask
scriptID = string.replace('$Id$','\n','\\n')
@ -35,11 +35,10 @@ def periodic_3Dpad(array, rimdim=(1,1,1)):
# MAIN
# --------------------------------------------------------------------
features = [ \
{'aliens': 1, 'name': 'biplane'},
{'aliens': 1, 'name': 'boundary'},
{'aliens': 2, 'name': 'tripleline'},
{'aliens': 3, 'name': 'quadruplepoint'}
features = [
{'aliens': 1, 'names': ['boundary','biplane'],},
{'aliens': 2, 'names': ['tripleline',],},
{'aliens': 3, 'names': ['quadruplepoint',],}
]
neighborhoods = {
@ -61,6 +60,7 @@ neighborhoods = {
[-1, 1,-1],
[ 0, 1,-1],
[ 1, 1,-1],
#
[-1,-1, 0],
[ 0,-1, 0],
[ 1,-1, 0],
@ -70,6 +70,7 @@ neighborhoods = {
[-1, 1, 0],
[ 0, 1, 0],
[ 1, 1, 0],
#
[-1,-1, 1],
[ 0,-1, 1],
[ 1,-1, 1],
@ -91,28 +92,31 @@ parser.add_option('-c','--coordinates', dest='coords', metavar='string',
help='column heading for coordinates [%default]')
parser.add_option('-i','--identifier', dest='id', metavar = 'string',
help='heading of column containing grain identifier [%default]')
parser.add_option('-t','--type', dest='type', action='extend', metavar='<string LIST>',
help='feature type (%s)'%(', '.join(map(lambda x:', '.join([x['name']]),features))))
parser.add_option('-n','--neighborhood',dest='neigborhood', type='choice',
choices=neighborhoods.keys(), metavar='string',
help='type of neighborhood (%s) [neumann]'%(', '.join(neighborhoods.keys())))
parser.add_option('-t','--type', dest = 'type', action = 'extend', type = 'string', metavar = '<string LIST>',
help = 'feature type (%s) '%(', '.join(map(lambda x:'|'.join(x['names']),features))) )
parser.add_option('-n','--neighborhood', dest='neighborhood', choices = neighborhoods.keys(), metavar = 'string',
help = 'type of neighborhood (%s) [neumann]'%(', '.join(neighborhoods.keys())))
parser.add_option('-s', '--scale', dest = 'scale', type = 'float',
help = 'voxel size [%default]')
parser.set_defaults(type = [])
parser.set_defaults(coords = 'ip')
parser.set_defaults(id = 'texture')
parser.set_defaults(neighborhood = 'neumann')
parser.set_defaults(scale = 1.0)
(options,filenames) = parser.parse_args()
if len(options.type) == 0: parser.error('please select a feature type')
if not set(options.type).issubset(set(map(lambda x: x['name'],features))):
parser.error('type must be chosen from (%s)...'%(', '.join(map(lambda x:', '.join([x['name']]),features))))
if 'biplane' in options.type and 'boundary' in options.type:
parser.error("please select only one alias for 'biplane' and 'boundary'")
feature_list = []
for i,feature in enumerate(features):
if feature['name'] in options.type: feature_list.append(i) # remember valid features
# ------------------------------------------ setup file handles ------------------------------------
for name in feature['names']:
for myType in options.type:
if name.startswith(myType):
feature_list.append(i) # remember valid features
break
files = []
for name in filenames:
@ -129,7 +133,7 @@ for file in files:
# --------------- figure out position of labels and coordinates ------------------------------------
try:
locationCol = table.labels.index('1_%s'%options.coords) # columns containing location data
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data
except ValueError:
file['croak'].write('no coordinate data (%s.x) found...\n'%options.coords)
continue
@ -140,7 +144,7 @@ for file in files:
# ------------------------------------------ assemble header ---------------------------------------
for feature in feature_list:
table.labels_append('ED_%s(%s)'%(features[feature]['name'],options.id)) # extend ASCII header with new labels
table.labels_append('ED_%s(%s)'%(features[feature]['names'],options.id)) # extend ASCII header with new labels
table.head_write()
@ -168,23 +172,24 @@ for file in files:
stencil[p[0]+1,
p[1]+1,
p[2]+1] = 1
convoluted[i,:,:,:] = ndimage.convolve(microstructure,stencil)
distance = np.ones((len(feature_list),grid[0],grid[1],grid[2]),'d')
distance = np.ones((len(feature_list),info['grid'][0],info['grid'][1],info['grid'][2]),'d')
convoluted = np.sort(convoluted,axis=0)
uniques = np.zeros(grid)
check = np.empty(grid)
check[:,:,:] = np.nan
for i in xrange(len(neighborhood)):
uniques += np.where(convoluted[i,1:-1,1:-1,1:-1] == check,0,1)
check = convoluted[i,1:-1,1:-1,1:-1]
convoluted = np.sort(convoluted,axis = 0)
uniques = np.where(convoluted[0,1:-1,1:-1,1:-1] != 0, 1,0) # initialize unique value counter (exclude myself [= 0])
for i in xrange(1,len(neighborhood)): # check remaining points in neighborhood
uniques += np.where(np.logical_and(
convoluted[i,1:-1,1:-1,1:-1] != convoluted[i-1,1:-1,1:-1,1:-1], # flip of ID difference detected?
convoluted[i,1:-1,1:-1,1:-1] != 0), # not myself?
1,0) # count flip
for i,feature_id in enumerate(feature_list):
distance[i,:,:,:] = np.where(uniques > features[feature_id]['aliens'],0.0,1.0)
distance[i,:,:,:] = np.where(uniques >= features[feature_id]['aliens'],0.0,1.0) # seed with 0.0 when enough unique neighbor IDs are present
for i in xrange(len(feature_list)):
distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[unitlength]*3
distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[options.scale]*3
distance.shape = (len(feature_list),grid.prod())
# ------------------------------------------ process data ------------------------------------------

View File

@ -105,7 +105,7 @@ parser.add_option('-t','--type', dest = 'type', action = 'extend', type
help = 'feature type (%s) '%(', '.join(map(lambda x:'|'.join(x['names']),features))) )
parser.add_option('-n','--neighborhood', dest='neighborhood', choices = neighborhoods.keys(), metavar = 'string',
help = 'type of neighborhood (%s) [neumann]'%(', '.join(neighborhoods.keys())))
parser.add_option('-s', '--scale', dest = 'scale', type = 'float',
parser.add_option('-s', '--scale', dest = 'scale', type = 'float', metavar='float',
help = 'voxel size [%default]')
parser.set_defaults(type = [])