put changes on algorithm from geom_fromEuclideanDistance into addEuclideanDistance
This commit is contained in:
parent
f3bab46275
commit
e4a94aa72b
|
@ -1,10 +1,10 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- coding: UTF-8 no BOM -*-
|
||||
|
||||
import os,sys,string
|
||||
import os,sys,string,re,math
|
||||
import numpy as np
|
||||
from optparse import OptionParser
|
||||
from scipy import ndimage
|
||||
from optparse import OptionParser
|
||||
import damask
|
||||
|
||||
scriptID = string.replace('$Id$','\n','\\n')
|
||||
|
@ -35,11 +35,10 @@ def periodic_3Dpad(array, rimdim=(1,1,1)):
|
|||
# MAIN
|
||||
# --------------------------------------------------------------------
|
||||
|
||||
features = [ \
|
||||
{'aliens': 1, 'name': 'biplane'},
|
||||
{'aliens': 1, 'name': 'boundary'},
|
||||
{'aliens': 2, 'name': 'tripleline'},
|
||||
{'aliens': 3, 'name': 'quadruplepoint'}
|
||||
features = [
|
||||
{'aliens': 1, 'names': ['boundary','biplane'],},
|
||||
{'aliens': 2, 'names': ['tripleline',],},
|
||||
{'aliens': 3, 'names': ['quadruplepoint',],}
|
||||
]
|
||||
|
||||
neighborhoods = {
|
||||
|
@ -61,6 +60,7 @@ neighborhoods = {
|
|||
[-1, 1,-1],
|
||||
[ 0, 1,-1],
|
||||
[ 1, 1,-1],
|
||||
#
|
||||
[-1,-1, 0],
|
||||
[ 0,-1, 0],
|
||||
[ 1,-1, 0],
|
||||
|
@ -70,6 +70,7 @@ neighborhoods = {
|
|||
[-1, 1, 0],
|
||||
[ 0, 1, 0],
|
||||
[ 1, 1, 0],
|
||||
#
|
||||
[-1,-1, 1],
|
||||
[ 0,-1, 1],
|
||||
[ 1,-1, 1],
|
||||
|
@ -91,28 +92,31 @@ parser.add_option('-c','--coordinates', dest='coords', metavar='string',
|
|||
help='column heading for coordinates [%default]')
|
||||
parser.add_option('-i','--identifier', dest='id', metavar = 'string',
|
||||
help='heading of column containing grain identifier [%default]')
|
||||
parser.add_option('-t','--type', dest='type', action='extend', metavar='<string LIST>',
|
||||
help='feature type (%s)'%(', '.join(map(lambda x:', '.join([x['name']]),features))))
|
||||
parser.add_option('-n','--neighborhood',dest='neigborhood', type='choice',
|
||||
choices=neighborhoods.keys(), metavar='string',
|
||||
help='type of neighborhood (%s) [neumann]'%(', '.join(neighborhoods.keys())))
|
||||
parser.add_option('-t','--type', dest = 'type', action = 'extend', type = 'string', metavar = '<string LIST>',
|
||||
help = 'feature type (%s) '%(', '.join(map(lambda x:'|'.join(x['names']),features))) )
|
||||
parser.add_option('-n','--neighborhood', dest='neighborhood', choices = neighborhoods.keys(), metavar = 'string',
|
||||
help = 'type of neighborhood (%s) [neumann]'%(', '.join(neighborhoods.keys())))
|
||||
parser.add_option('-s', '--scale', dest = 'scale', type = 'float',
|
||||
help = 'voxel size [%default]')
|
||||
parser.set_defaults(type = [])
|
||||
parser.set_defaults(coords = 'ip')
|
||||
parser.set_defaults(id = 'texture')
|
||||
parser.set_defaults(neighborhood = 'neumann')
|
||||
parser.set_defaults(scale = 1.0)
|
||||
|
||||
(options,filenames) = parser.parse_args()
|
||||
|
||||
if len(options.type) == 0: parser.error('please select a feature type')
|
||||
if not set(options.type).issubset(set(map(lambda x: x['name'],features))):
|
||||
parser.error('type must be chosen from (%s)...'%(', '.join(map(lambda x:', '.join([x['name']]),features))))
|
||||
if 'biplane' in options.type and 'boundary' in options.type:
|
||||
parser.error("please select only one alias for 'biplane' and 'boundary'")
|
||||
|
||||
feature_list = []
|
||||
for i,feature in enumerate(features):
|
||||
if feature['name'] in options.type: feature_list.append(i) # remember valid features
|
||||
# ------------------------------------------ setup file handles ------------------------------------
|
||||
for name in feature['names']:
|
||||
for myType in options.type:
|
||||
if name.startswith(myType):
|
||||
feature_list.append(i) # remember valid features
|
||||
break
|
||||
|
||||
files = []
|
||||
for name in filenames:
|
||||
|
@ -129,7 +133,7 @@ for file in files:
|
|||
|
||||
# --------------- figure out position of labels and coordinates ------------------------------------
|
||||
try:
|
||||
locationCol = table.labels.index('1_%s'%options.coords) # columns containing location data
|
||||
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data
|
||||
except ValueError:
|
||||
file['croak'].write('no coordinate data (%s.x) found...\n'%options.coords)
|
||||
continue
|
||||
|
@ -140,7 +144,7 @@ for file in files:
|
|||
|
||||
# ------------------------------------------ assemble header ---------------------------------------
|
||||
for feature in feature_list:
|
||||
table.labels_append('ED_%s(%s)'%(features[feature]['name'],options.id)) # extend ASCII header with new labels
|
||||
table.labels_append('ED_%s(%s)'%(features[feature]['names'],options.id)) # extend ASCII header with new labels
|
||||
|
||||
table.head_write()
|
||||
|
||||
|
@ -168,23 +172,24 @@ for file in files:
|
|||
stencil[p[0]+1,
|
||||
p[1]+1,
|
||||
p[2]+1] = 1
|
||||
|
||||
convoluted[i,:,:,:] = ndimage.convolve(microstructure,stencil)
|
||||
|
||||
distance = np.ones((len(feature_list),grid[0],grid[1],grid[2]),'d')
|
||||
distance = np.ones((len(feature_list),info['grid'][0],info['grid'][1],info['grid'][2]),'d')
|
||||
|
||||
convoluted = np.sort(convoluted,axis=0)
|
||||
uniques = np.zeros(grid)
|
||||
check = np.empty(grid)
|
||||
check[:,:,:] = np.nan
|
||||
for i in xrange(len(neighborhood)):
|
||||
uniques += np.where(convoluted[i,1:-1,1:-1,1:-1] == check,0,1)
|
||||
check = convoluted[i,1:-1,1:-1,1:-1]
|
||||
convoluted = np.sort(convoluted,axis = 0)
|
||||
uniques = np.where(convoluted[0,1:-1,1:-1,1:-1] != 0, 1,0) # initialize unique value counter (exclude myself [= 0])
|
||||
|
||||
for i in xrange(1,len(neighborhood)): # check remaining points in neighborhood
|
||||
uniques += np.where(np.logical_and(
|
||||
convoluted[i,1:-1,1:-1,1:-1] != convoluted[i-1,1:-1,1:-1,1:-1], # flip of ID difference detected?
|
||||
convoluted[i,1:-1,1:-1,1:-1] != 0), # not myself?
|
||||
1,0) # count flip
|
||||
|
||||
for i,feature_id in enumerate(feature_list):
|
||||
distance[i,:,:,:] = np.where(uniques > features[feature_id]['aliens'],0.0,1.0)
|
||||
|
||||
distance[i,:,:,:] = np.where(uniques >= features[feature_id]['aliens'],0.0,1.0) # seed with 0.0 when enough unique neighbor IDs are present
|
||||
|
||||
for i in xrange(len(feature_list)):
|
||||
distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[unitlength]*3
|
||||
distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[options.scale]*3
|
||||
distance.shape = (len(feature_list),grid.prod())
|
||||
|
||||
# ------------------------------------------ process data ------------------------------------------
|
||||
|
|
|
@ -105,7 +105,7 @@ parser.add_option('-t','--type', dest = 'type', action = 'extend', type
|
|||
help = 'feature type (%s) '%(', '.join(map(lambda x:'|'.join(x['names']),features))) )
|
||||
parser.add_option('-n','--neighborhood', dest='neighborhood', choices = neighborhoods.keys(), metavar = 'string',
|
||||
help = 'type of neighborhood (%s) [neumann]'%(', '.join(neighborhoods.keys())))
|
||||
parser.add_option('-s', '--scale', dest = 'scale', type = 'float',
|
||||
parser.add_option('-s', '--scale', dest = 'scale', type = 'float', metavar='float',
|
||||
help = 'voxel size [%default]')
|
||||
|
||||
parser.set_defaults(type = [])
|
||||
|
|
Loading…
Reference in New Issue