From e4a94aa72ba89b64078cdcd83083a40fc3733753 Mon Sep 17 00:00:00 2001 From: Martin Diehl Date: Sat, 7 Feb 2015 17:11:46 +0000 Subject: [PATCH] put changes on algorithm from geom_fromEuclideanDistance into addEuclideanDistance --- processing/post/addEuclideanDistance.py | 65 +++++++++++--------- processing/pre/geom_fromEuclideanDistance.py | 2 +- 2 files changed, 36 insertions(+), 31 deletions(-) diff --git a/processing/post/addEuclideanDistance.py b/processing/post/addEuclideanDistance.py index 8854b05d7..1d77264cf 100755 --- a/processing/post/addEuclideanDistance.py +++ b/processing/post/addEuclideanDistance.py @@ -1,10 +1,10 @@ #!/usr/bin/env python # -*- coding: UTF-8 no BOM -*- -import os,sys,string +import os,sys,string,re,math import numpy as np -from optparse import OptionParser from scipy import ndimage +from optparse import OptionParser import damask scriptID = string.replace('$Id$','\n','\\n') @@ -35,11 +35,10 @@ def periodic_3Dpad(array, rimdim=(1,1,1)): # MAIN # -------------------------------------------------------------------- -features = [ \ - {'aliens': 1, 'name': 'biplane'}, - {'aliens': 1, 'name': 'boundary'}, - {'aliens': 2, 'name': 'tripleline'}, - {'aliens': 3, 'name': 'quadruplepoint'} +features = [ + {'aliens': 1, 'names': ['boundary','biplane'],}, + {'aliens': 2, 'names': ['tripleline',],}, + {'aliens': 3, 'names': ['quadruplepoint',],} ] neighborhoods = { @@ -61,6 +60,7 @@ neighborhoods = { [-1, 1,-1], [ 0, 1,-1], [ 1, 1,-1], +# [-1,-1, 0], [ 0,-1, 0], [ 1,-1, 0], @@ -70,6 +70,7 @@ neighborhoods = { [-1, 1, 0], [ 0, 1, 0], [ 1, 1, 0], +# [-1,-1, 1], [ 0,-1, 1], [ 1,-1, 1], @@ -91,28 +92,31 @@ parser.add_option('-c','--coordinates', dest='coords', metavar='string', help='column heading for coordinates [%default]') parser.add_option('-i','--identifier', dest='id', metavar = 'string', help='heading of column containing grain identifier [%default]') -parser.add_option('-t','--type', dest='type', action='extend', metavar='', - help='feature type (%s)'%(', '.join(map(lambda x:', '.join([x['name']]),features)))) -parser.add_option('-n','--neighborhood',dest='neigborhood', type='choice', - choices=neighborhoods.keys(), metavar='string', - help='type of neighborhood (%s) [neumann]'%(', '.join(neighborhoods.keys()))) +parser.add_option('-t','--type', dest = 'type', action = 'extend', type = 'string', metavar = '', + help = 'feature type (%s) '%(', '.join(map(lambda x:'|'.join(x['names']),features))) ) +parser.add_option('-n','--neighborhood', dest='neighborhood', choices = neighborhoods.keys(), metavar = 'string', + help = 'type of neighborhood (%s) [neumann]'%(', '.join(neighborhoods.keys()))) +parser.add_option('-s', '--scale', dest = 'scale', type = 'float', + help = 'voxel size [%default]') parser.set_defaults(type = []) parser.set_defaults(coords = 'ip') parser.set_defaults(id = 'texture') parser.set_defaults(neighborhood = 'neumann') +parser.set_defaults(scale = 1.0) (options,filenames) = parser.parse_args() if len(options.type) == 0: parser.error('please select a feature type') -if not set(options.type).issubset(set(map(lambda x: x['name'],features))): - parser.error('type must be chosen from (%s)...'%(', '.join(map(lambda x:', '.join([x['name']]),features)))) if 'biplane' in options.type and 'boundary' in options.type: parser.error("please select only one alias for 'biplane' and 'boundary'") feature_list = [] for i,feature in enumerate(features): - if feature['name'] in options.type: feature_list.append(i) # remember valid features -# ------------------------------------------ setup file handles ------------------------------------ + for name in feature['names']: + for myType in options.type: + if name.startswith(myType): + feature_list.append(i) # remember valid features + break files = [] for name in filenames: @@ -129,7 +133,7 @@ for file in files: # --------------- figure out position of labels and coordinates ------------------------------------ try: - locationCol = table.labels.index('1_%s'%options.coords) # columns containing location data + locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data except ValueError: file['croak'].write('no coordinate data (%s.x) found...\n'%options.coords) continue @@ -140,7 +144,7 @@ for file in files: # ------------------------------------------ assemble header --------------------------------------- for feature in feature_list: - table.labels_append('ED_%s(%s)'%(features[feature]['name'],options.id)) # extend ASCII header with new labels + table.labels_append('ED_%s(%s)'%(features[feature]['names'],options.id)) # extend ASCII header with new labels table.head_write() @@ -168,23 +172,24 @@ for file in files: stencil[p[0]+1, p[1]+1, p[2]+1] = 1 - convoluted[i,:,:,:] = ndimage.convolve(microstructure,stencil) - distance = np.ones((len(feature_list),grid[0],grid[1],grid[2]),'d') + distance = np.ones((len(feature_list),info['grid'][0],info['grid'][1],info['grid'][2]),'d') - convoluted = np.sort(convoluted,axis=0) - uniques = np.zeros(grid) - check = np.empty(grid) - check[:,:,:] = np.nan - for i in xrange(len(neighborhood)): - uniques += np.where(convoluted[i,1:-1,1:-1,1:-1] == check,0,1) - check = convoluted[i,1:-1,1:-1,1:-1] + convoluted = np.sort(convoluted,axis = 0) + uniques = np.where(convoluted[0,1:-1,1:-1,1:-1] != 0, 1,0) # initialize unique value counter (exclude myself [= 0]) + + for i in xrange(1,len(neighborhood)): # check remaining points in neighborhood + uniques += np.where(np.logical_and( + convoluted[i,1:-1,1:-1,1:-1] != convoluted[i-1,1:-1,1:-1,1:-1], # flip of ID difference detected? + convoluted[i,1:-1,1:-1,1:-1] != 0), # not myself? + 1,0) # count flip + for i,feature_id in enumerate(feature_list): - distance[i,:,:,:] = np.where(uniques > features[feature_id]['aliens'],0.0,1.0) - + distance[i,:,:,:] = np.where(uniques >= features[feature_id]['aliens'],0.0,1.0) # seed with 0.0 when enough unique neighbor IDs are present + for i in xrange(len(feature_list)): - distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[unitlength]*3 + distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[options.scale]*3 distance.shape = (len(feature_list),grid.prod()) # ------------------------------------------ process data ------------------------------------------ diff --git a/processing/pre/geom_fromEuclideanDistance.py b/processing/pre/geom_fromEuclideanDistance.py index ce4c2f50d..bd2ee68c4 100755 --- a/processing/pre/geom_fromEuclideanDistance.py +++ b/processing/pre/geom_fromEuclideanDistance.py @@ -105,7 +105,7 @@ parser.add_option('-t','--type', dest = 'type', action = 'extend', type help = 'feature type (%s) '%(', '.join(map(lambda x:'|'.join(x['names']),features))) ) parser.add_option('-n','--neighborhood', dest='neighborhood', choices = neighborhoods.keys(), metavar = 'string', help = 'type of neighborhood (%s) [neumann]'%(', '.join(neighborhoods.keys()))) -parser.add_option('-s', '--scale', dest = 'scale', type = 'float', +parser.add_option('-s', '--scale', dest = 'scale', type = 'float', metavar='float', help = 'voxel size [%default]') parser.set_defaults(type = [])