fixed output

and a few more changes following phenopowerlaw
This commit is contained in:
Martin Diehl 2018-12-30 15:04:04 +01:00
parent 892ba86d26
commit e217ce3a25
2 changed files with 19 additions and 20 deletions

View File

@ -1074,7 +1074,7 @@ function constitutive_postResults(S6, Fi, FeArray, ipc, ip, el)
plasticityType: select case (phase_plasticity(material_phase(ipc,ip,el)))
case (PLASTICITY_ISOTROPIC_ID) plasticityType
constitutive_postResults(startPos:endPos) = &
plastic_isotropic_postResults(S6,ipc,ip,el)
plastic_isotropic_postResults(Mp,ipc,ip,el)
case (PLASTICITY_PHENOPOWERLAW_ID) plasticityType
of = phasememberAt(ipc,ip,el)

View File

@ -204,6 +204,7 @@ subroutine plastic_isotropic_init()
sizeState = sizeDotState
call material_allocatePlasticState(p,NipcMyPhase,sizeState,sizeDotState,0_pInt, &
1_pInt,0_pInt,0_pInt)
plasticState(p)%sizePostResults = sum(plastic_isotropic_sizePostResult(:,phase_plasticityInstance(p)))
!--------------------------------------------------------------------------------------------------
@ -330,7 +331,7 @@ subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dTstar,Tstar,instance,of)
dLi_dTstar !< derivative of Li with respect to the Mandel stress
real(pReal), dimension(3,3), intent(in) :: &
Tstar !< Mandel stress
Tstar !< Mandel stress ToDo: Mi?
integer(pInt), intent(in) :: &
instance, &
of
@ -443,9 +444,10 @@ end subroutine plastic_isotropic_dotState
!--------------------------------------------------------------------------------------------------
!> @brief return array of constitutive results
!--------------------------------------------------------------------------------------------------
function plastic_isotropic_postResults(Tstar_v,ipc,ip,el)
function plastic_isotropic_postResults(Mp,ipc,ip,el)
use math, only: &
math_mul6x6
math_mul33xx33, &
math_deviatoric33
use material, only: &
plasticState, &
material_phase, &
@ -453,20 +455,19 @@ function plastic_isotropic_postResults(Tstar_v,ipc,ip,el)
phase_plasticityInstance
implicit none
real(pReal), dimension(6), intent(in) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal), dimension(3,3), intent(in) :: &
Mp !< Mandel stress
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(plasticState(material_phase(ipc,ip,el))%sizePostResults) :: &
real(pReal), dimension(sum(plastic_isotropic_sizePostResult(:,phase_plasticityInstance(material_phase(ipc,ip,el))))) :: &
plastic_isotropic_postResults
real(pReal), dimension(6) :: &
Tstar_dev_v !< deviatoric 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal) :: &
norm_Tstar_v ! euclidean norm of Tstar_dev
norm_Mp !< norm of the Mandel stress
integer(pInt) :: &
instance, & !< instance of my instance (unique number of my constitutive model)
of, & !< shortcut notation for offset position in state array
@ -478,13 +479,11 @@ function plastic_isotropic_postResults(Tstar_v,ipc,ip,el)
associate(prm => param(instance))
!--------------------------------------------------------------------------------------------------
! norm of (deviatoric) 2nd Piola-Kirchhoff stress
! norm of (deviatoric) Mandel stress
if (prm%dilatation) then
norm_Tstar_v = sqrt(math_mul6x6(Tstar_v,Tstar_v))
norm_Mp = sqrt(math_mul33xx33(Mp,Mp))
else
Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal
Tstar_dev_v(4:6) = Tstar_v(4:6)
norm_Tstar_v = sqrt(math_mul6x6(Tstar_dev_v,Tstar_dev_v))
norm_Mp = sqrt(math_mul33xx33(math_deviatoric33(Mp),math_deviatoric33(Mp)))
endif
c = 0_pInt
@ -497,7 +496,7 @@ function plastic_isotropic_postResults(Tstar_v,ipc,ip,el)
c = c + 1_pInt
case (strainrate_ID)
plastic_isotropic_postResults(c+1_pInt) = &
prm%gdot0 * ( sqrt(1.5_pReal) * norm_Tstar_v &
prm%gdot0 * ( sqrt(1.5_pReal) * norm_Mp &
/ &!----------------------------------------------------------------------------------
(prm%fTaylor * state(instance)%flowstress(of)) ) ** prm%n
c = c + 1_pInt