consistent API
This commit is contained in:
parent
b53cda6411
commit
892ba86d26
|
@ -861,7 +861,7 @@ subroutine constitutive_collectDotState(S6, FeArray, Fi, FpArray, subdt, subfrac
|
|||
plasticityType: select case (phase_plasticity(material_phase(ipc,ip,el)))
|
||||
|
||||
case (PLASTICITY_ISOTROPIC_ID) plasticityType
|
||||
call plastic_isotropic_dotState (math_Mandel33to6(Mp),ipc,ip,el)
|
||||
call plastic_isotropic_dotState (Mp,ipc,ip,el)
|
||||
|
||||
case (PLASTICITY_PHENOPOWERLAW_ID) plasticityType
|
||||
of = phasememberAt(ipc,ip,el)
|
||||
|
|
|
@ -300,8 +300,7 @@ subroutine plastic_isotropic_LpAndItsTangent(Lp,dLp_dMp,Mp,ipc,ip,el)
|
|||
write(6,'(/,a,/,f12.5)') '<< CONST isotropic >> norm Tstar / MPa', norm_Mp_dev*1.0e-6_pReal
|
||||
write(6,'(/,a,/,f12.5)') '<< CONST isotropic >> gdot', gamma_dot
|
||||
end if
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Calculation of the tangent of Lp
|
||||
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLp_dMp(k,l,m,n) = (prm%n-1.0_pReal) * Mp_dev(k,l)*Mp_dev(m,n) / squarenorm_Mp_dev
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
|
||||
|
@ -312,6 +311,7 @@ subroutine plastic_isotropic_LpAndItsTangent(Lp,dLp_dMp,Mp,ipc,ip,el)
|
|||
end if
|
||||
|
||||
end associate
|
||||
|
||||
end subroutine plastic_isotropic_LpAndItsTangent
|
||||
|
||||
|
||||
|
@ -331,7 +331,7 @@ subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dTstar,Tstar,instance,of)
|
|||
|
||||
real(pReal), dimension(3,3), intent(in) :: &
|
||||
Tstar !< Mandel stress
|
||||
integer(pInt), intent(in) :: &
|
||||
integer(pInt), intent(in) :: &
|
||||
instance, &
|
||||
of
|
||||
|
||||
|
@ -350,14 +350,10 @@ subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dTstar,Tstar,instance,of)
|
|||
squarenorm_Tstar_sph = math_mul33xx33(Tstar_sph,Tstar_sph)
|
||||
norm_Tstar_sph = sqrt(squarenorm_Tstar_sph)
|
||||
|
||||
if (prm%dilatation .and. norm_Tstar_sph > 0.0_pReal) then ! Tstar == 0 or J2 plascitiy --> both Li and dLi_dTstar are zero
|
||||
gamma_dot = prm%gdot0 &
|
||||
* (sqrt(1.5_pReal) * norm_Tstar_sph / prm%fTaylor / stt%flowstress(of) ) **prm%n
|
||||
if (prm%dilatation .and. norm_Tstar_sph > 0.0_pReal) then ! no stress or J2 plastitiy --> Li and its derivative are zero
|
||||
gamma_dot = prm%gdot0 * (sqrt(1.5_pReal) * norm_Tstar_sph /(prm%fTaylor*stt%flowstress(of))) **prm%n
|
||||
|
||||
Li = Tstar_sph/norm_Tstar_sph * gamma_dot/prm%fTaylor
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Calculation of the tangent of Li
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLi_dTstar(k,l,m,n) = (prm%n-1.0_pReal) * Tstar_sph(k,l)*Tstar_sph(m,n) / squarenorm_Tstar_sph
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
|
||||
|
@ -365,8 +361,8 @@ subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dTstar,Tstar,instance,of)
|
|||
|
||||
dLi_dTstar = gamma_dot / prm%fTaylor * dLi_dTstar / norm_Tstar_sph
|
||||
else
|
||||
Li = 0.0_pReal
|
||||
dLi_dTstar = 0.0_pReal
|
||||
Li = 0.0_pReal
|
||||
dLi_dTstar = 0.0_pReal
|
||||
endif
|
||||
|
||||
end associate
|
||||
|
@ -377,52 +373,46 @@ subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dTstar,Tstar,instance,of)
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief calculates the rate of change of microstructure
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine plastic_isotropic_dotState(Tstar_v,ipc,ip,el)
|
||||
subroutine plastic_isotropic_dotState(Mp,ipc,ip,el)
|
||||
use prec, only: &
|
||||
dEq0
|
||||
use math, only: &
|
||||
math_mul6x6
|
||||
math_mul33xx33, &
|
||||
math_deviatoric33
|
||||
use material, only: &
|
||||
phasememberAt, &
|
||||
material_phase, &
|
||||
phase_plasticityInstance
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(6), intent(in):: &
|
||||
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
|
||||
real(pReal), dimension(3,3), intent(in) :: &
|
||||
Mp !< Mandel stress
|
||||
integer(pInt), intent(in) :: &
|
||||
ipc, & !< component-ID of integration point
|
||||
ip, & !< integration point
|
||||
el !< element
|
||||
real(pReal), dimension(6) :: &
|
||||
Tstar_dev_v !< deviatoric 2nd Piola Kirchhoff stress tensor in Mandel notation
|
||||
real(pReal) :: &
|
||||
gamma_dot, & !< strainrate
|
||||
hardening, & !< hardening coefficient
|
||||
saturation, & !< saturation flowstress
|
||||
norm_Tstar_v !< euclidean norm of Tstar_dev
|
||||
norm_Mp !< norm of the Mandel stress
|
||||
integer(pInt) :: &
|
||||
instance, & !< instance of my instance (unique number of my constitutive model)
|
||||
instance, &
|
||||
of !< shortcut notation for offset position in state array
|
||||
|
||||
of = phasememberAt(ipc,ip,el) ! phasememberAt should be tackled by material and be renamed to material_phasemember
|
||||
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
|
||||
associate(prm => param(instance))
|
||||
associate(prm => param(instance), stt => state(instance), dot => dotState(instance))
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! norm of (deviatoric) 2nd Piola-Kirchhoff stress
|
||||
! norm of (deviatoric) Mandel stress
|
||||
if (prm%dilatation) then
|
||||
norm_Tstar_v = sqrt(math_mul6x6(Tstar_v,Tstar_v))
|
||||
norm_Mp = sqrt(math_mul33xx33(Mp,Mp))
|
||||
else
|
||||
Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal
|
||||
Tstar_dev_v(4:6) = Tstar_v(4:6)
|
||||
norm_Tstar_v = sqrt(math_mul6x6(Tstar_dev_v,Tstar_dev_v))
|
||||
end if
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! strain rate
|
||||
gamma_dot = prm%gdot0 * ( sqrt(1.5_pReal) * norm_Tstar_v &
|
||||
/ &!-----------------------------------------------------------------------------------
|
||||
(prm%fTaylor*state(instance)%flowstress(of) ))**prm%n
|
||||
norm_Mp = sqrt(math_mul33xx33(math_deviatoric33(Mp),math_deviatoric33(Mp)))
|
||||
endif
|
||||
|
||||
gamma_dot = prm%gdot0 * (sqrt(1.5_pReal) * norm_Mp /(prm%fTaylor*stt%flowstress(of))) **prm%n
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! hardening coefficient
|
||||
|
@ -431,27 +421,25 @@ subroutine plastic_isotropic_dotState(Tstar_v,ipc,ip,el)
|
|||
saturation = prm%tausat
|
||||
else
|
||||
saturation = prm%tausat &
|
||||
+ asinh( (gamma_dot / prm%tausat_SinhFitA&
|
||||
)**(1.0_pReal / prm%tausat_SinhFitD)&
|
||||
+ asinh( (gamma_dot / prm%tausat_SinhFitA)**(1.0_pReal / prm%tausat_SinhFitD) &
|
||||
)**(1.0_pReal / prm%tausat_SinhFitC) &
|
||||
/ ( prm%tausat_SinhFitB &
|
||||
* (gamma_dot / prm%gdot0)**(1.0_pReal / prm%n) &
|
||||
)
|
||||
/ prm%tausat_SinhFitB * (gamma_dot / prm%gdot0)**(1.0_pReal / prm%n)
|
||||
endif
|
||||
hardening = ( prm%h0 + prm%h0_slopeLnRate * log(gamma_dot) ) &
|
||||
* abs( 1.0_pReal - state(instance)%flowstress(of)/saturation )**prm%a &
|
||||
* sign(1.0_pReal, 1.0_pReal - state(instance)%flowstress(of)/saturation)
|
||||
* abs( 1.0_pReal - stt%flowstress(of)/saturation )**prm%a &
|
||||
* sign(1.0_pReal, 1.0_pReal - stt%flowstress(of)/saturation)
|
||||
else
|
||||
hardening = 0.0_pReal
|
||||
endif
|
||||
|
||||
dotState(instance)%flowstress (of) = hardening * gamma_dot
|
||||
dotState(instance)%accumulatedShear(of) = gamma_dot
|
||||
dot%flowstress (of) = hardening * gamma_dot
|
||||
dot%accumulatedShear(of) = gamma_dot
|
||||
|
||||
end associate
|
||||
|
||||
end subroutine plastic_isotropic_dotState
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief return array of constitutive results
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
|
Loading…
Reference in New Issue