following ideas implemented by Philip in disloUCLA

prm and stt are pointers to instance of parameter and state
interaction_xxYY is a matrix, gets shape assigned during calculation
totalNslip and totalNslip are defined as derived parameter
This commit is contained in:
Martin Diehl 2018-06-27 10:01:36 +02:00
parent 00f34363dc
commit ddf7584f4d
1 changed files with 322 additions and 312 deletions

View File

@ -32,6 +32,9 @@ module plastic_phenopowerlaw
end enum
type, private :: tParameters !< container type for internal constitutive parameters
integer(pInt) :: &
totalNslip, &
totalNtwin
real(pReal) :: &
gdot0_slip, & !< reference shear strain rate for slip
gdot0_twin, & !< reference shear strain rate for twin
@ -57,16 +60,12 @@ module plastic_phenopowerlaw
tau0_twin, & !< initial critical shear stress for twin
tausat_slip, & !< maximum critical shear stress for slip
nonSchmidCoeff, &
H_int, & !< per family hardening activity (optional)
H_int !< per family hardening activity (optional)
real(pReal), dimension(:,:), allocatable :: &
interaction_SlipSlip, & !< slip resistance from slip activity
interaction_SlipTwin, & !< slip resistance from twin activity
interaction_TwinSlip, & !< twin resistance from slip activity
interaction_TwinTwin !< twin resistance from twin activity
real(pReal), dimension(:,:), allocatable :: &
matrix_SlipSlip, & !< slip resistance from slip activity
matrix_SlipTwin, & !< slip resistance from twin activity
matrix_TwinSlip, & !< twin resistance from slip activity
matrix_TwinTwin !< twin resistance from twin activity
integer(kind(undefined_ID)), dimension(:), allocatable :: &
outputID !< ID of each post result output
@ -85,7 +84,7 @@ module plastic_phenopowerlaw
sumF
end type
type(tPhenopowerlawState), allocatable, dimension(:), private :: &
type(tPhenopowerlawState), allocatable, dimension(:), target, private :: &
dotState, &
state
@ -147,6 +146,8 @@ subroutine plastic_phenopowerlaw_init
sizeState,sizeDotState, &
startIndex, endIndex
real(pReal), dimension(:,:), allocatable :: temp1, temp2
integer(pInt), dimension(0), parameter :: emptyIntArray = [integer(pInt)::]
real(pReal), dimension(0), parameter :: emptyRealArray = [real(pReal)::]
character(len=65536), dimension(0), parameter :: emptyStringArray = [character(len=65536)::]
@ -177,16 +178,19 @@ subroutine plastic_phenopowerlaw_init
allocate(dotState(maxNinstance))
do p = 1_pInt, size(phase_plasticityInstance)
if (phase_plasticity(p) == PLASTICITY_PHENOPOWERLAW_ID) then
if (phase_plasticity(p) /= PLASTICITY_PHENOPOWERLAW_ID) cycle
instance = phase_plasticityInstance(p)
prm => param(instance)
prm%Nslip = config_phase(p)%getInts('nslip',defaultVal=emptyIntArray)
!if (size > Nchunks_SlipFamilies + 1_pInt) call IO_error(150_pInt,ext_msg=extmsg)
if (sum(prm%Nslip) > 0_pInt) then
if (size(prm%Nslip) > count(lattice_NslipSystem(:,p) > 0_pInt)) call IO_error(150_pInt,ext_msg='Nslip')
if (any(lattice_NslipSystem(1:size(prm%Nslip),p)-prm%Nslip < 0_pInt)) call IO_error(150_pInt,ext_msg='Nslip')
prm%totalNslip = sum(prm%Nslip)
if (prm%totalNslip > 0_pInt) then
prm%tau0_slip = config_phase(p)%getFloats('tau0_slip')
prm%tausat_slip = config_phase(p)%getFloats('tausat_slip')
prm%interaction_SlipSlip = config_phase(p)%getFloats('interaction_slipslip')
prm%interaction_SlipSlip = spread(config_phase(p)%getFloats('interaction_slipslip'),2,1)
prm%H_int = config_phase(p)%getFloats('h_int',&
defaultVal=[(0.0_pReal,i=1_pInt,size(prm%Nslip))])
prm%nonSchmidCoeff = config_phase(p)%getFloats('nonschmid_coefficients',&
@ -199,10 +203,13 @@ subroutine plastic_phenopowerlaw_init
endif
prm%Ntwin = config_phase(p)%getInts('ntwin', defaultVal=emptyIntArray)
!if (size > Nchunks_SlipFamilies + 1_pInt) call IO_error(150_pInt,ext_msg=extmsg)
if (sum(prm%Ntwin) > 0_pInt) then
if (size(prm%Ntwin) > count(lattice_NtwinSystem(:,p) > 0_pInt)) call IO_error(150_pInt,ext_msg='Ntwin')
if (any(lattice_NtwinSystem(1:size(prm%Ntwin),p)-prm%Ntwin < 0_pInt)) call IO_error(150_pInt,ext_msg='Ntwin')
prm%totalNtwin = sum(prm%Ntwin)
if (prm%totalNtwin > 0_pInt) then
prm%tau0_twin = config_phase(p)%getFloats('tau0_twin')
prm%interaction_TwinTwin = config_phase(p)%getFloats('interaction_twintwin')
prm%interaction_TwinTwin = spread(config_phase(p)%getFloats('interaction_twintwin'),2,1)
prm%gdot0_twin = config_phase(p)%getFloat('gdot0_twin')
prm%n_twin = config_phase(p)%getFloat('n_twin')
@ -214,16 +221,12 @@ subroutine plastic_phenopowerlaw_init
prm%h0_TwinTwin = config_phase(p)%getFloat('h0_twintwin')
endif
if (sum(prm%Nslip) > 0_pInt .and. sum(prm%Ntwin) > 0_pInt) then
prm%interaction_SlipTwin = config_phase(p)%getFloats('interaction_sliptwin')
prm%interaction_TwinSlip = config_phase(p)%getFloats('interaction_twinslip')
if (prm%totalNslip > 0_pInt .and. prm%totalNtwin > 0_pInt) then
prm%interaction_SlipTwin = spread(config_phase(p)%getFloats('interaction_sliptwin'),2,1)
prm%interaction_TwinSlip = spread(config_phase(p)%getFloats('interaction_twinslip'),2,1)
prm%h0_TwinSlip = config_phase(p)%getFloat('h0_twinslip')
endif
allocate(prm%matrix_SlipSlip(sum(prm%Nslip),sum(prm%Nslip)),source =0.0_pReal)
allocate(prm%matrix_SlipTwin(sum(prm%Nslip),sum(prm%Ntwin)),source =0.0_pReal)
allocate(prm%matrix_TwinSlip(sum(prm%Ntwin),sum(prm%Nslip)),source =0.0_pReal)
allocate(prm%matrix_TwinTwin(sum(prm%Ntwin),sum(prm%Ntwin)),source =0.0_pReal)
prm%aTolResistance = config_phase(p)%getFloat('atol_resistance',defaultVal=1.0_pReal)
prm%aTolShear = config_phase(p)%getFloat('atol_shear',defaultVal=1.0e-6_pReal)
@ -343,8 +346,11 @@ subroutine plastic_phenopowerlaw_init
if (any(numerics_integrator == 5_pInt)) &
allocate(plasticState(p)%RKCK45dotState (6,sizeDotState,NipcMyPhase), source=0.0_pReal)
!--------------------------------------------------------------------------------------------------
! calculate hardening matrices
allocate(temp1(sum(prm%Nslip),sum(prm%Nslip)),source =0.0_pReal)
allocate(temp2(sum(prm%Nslip),sum(prm%Ntwin)),source =0.0_pReal)
mySlipFamilies: do f = 1_pInt,size(prm%Nslip,1) ! >>> interaction slip -- X
index_myFamily = sum(prm%Nslip(1:f-1_pInt))
@ -352,49 +358,56 @@ subroutine plastic_phenopowerlaw_init
otherSlipFamilies: do o = 1_pInt,size(prm%Nslip,1)
index_otherFamily = sum(prm%Nslip(1:o-1_pInt))
otherSlipSystems: do k = 1_pInt,prm%Nslip(o)
prm%matrix_SlipSlip(index_myFamily+j,index_otherFamily+k) = &
temp1(index_myFamily+j,index_otherFamily+k) = &
prm%interaction_SlipSlip(lattice_interactionSlipSlip( &
sum(lattice_NslipSystem(1:f-1,p))+j, &
sum(lattice_NslipSystem(1:o-1,p))+k, &
p))
p),1)
enddo otherSlipSystems; enddo otherSlipFamilies
twinFamilies: do o = 1_pInt,size(prm%Ntwin,1)
index_otherFamily = sum(prm%Ntwin(1:o-1_pInt))
twinSystems: do k = 1_pInt,prm%Ntwin(o)
prm%matrix_SlipTwin(index_myFamily+j,index_otherFamily+k) = &
temp2(index_myFamily+j,index_otherFamily+k) = &
prm%interaction_SlipTwin(lattice_interactionSlipTwin( &
sum(lattice_NslipSystem(1:f-1_pInt,p))+j, &
sum(lattice_NtwinSystem(1:o-1_pInt,p))+k, &
p))
p),1)
enddo twinSystems; enddo twinFamilies
enddo mySlipSystems
enddo mySlipFamilies
prm%interaction_SlipSlip = temp1; deallocate(temp1)
prm%interaction_SlipTwin = temp2; deallocate(temp2)
allocate(temp1(sum(prm%Ntwin),sum(prm%Nslip)),source =0.0_pReal)
allocate(temp2(sum(prm%Ntwin),sum(prm%Ntwin)),source =0.0_pReal)
myTwinFamilies: do f = 1_pInt,size(prm%Ntwin,1) ! >>> interaction twin -- X
index_myFamily = sum(prm%Ntwin(1:f-1_pInt))
myTwinSystems: do j = 1_pInt,prm%Ntwin(f)
slipFamilies: do o = 1_pInt,size(prm%Nslip,1)
index_otherFamily = sum(prm%Nslip(1:o-1_pInt))
slipSystems: do k = 1_pInt,prm%Nslip(o)
prm%matrix_TwinSlip(index_myFamily+j,index_otherFamily+k) = &
temp1(index_myFamily+j,index_otherFamily+k) = &
prm%interaction_TwinSlip(lattice_interactionTwinSlip( &
sum(lattice_NtwinSystem(1:f-1_pInt,p))+j, &
sum(lattice_NslipSystem(1:o-1_pInt,p))+k, &
p))
p),1)
enddo slipSystems; enddo slipFamilies
otherTwinFamilies: do o = 1_pInt,size(prm%Ntwin,1)
index_otherFamily = sum(prm%Ntwin(1:o-1_pInt))
otherTwinSystems: do k = 1_pInt,prm%Ntwin(o)
prm%matrix_TwinTwin(index_myFamily+j,index_otherFamily+k) = &
temp2(index_myFamily+j,index_otherFamily+k) = &
prm%interaction_TwinTwin(lattice_interactionTwinTwin( &
sum(lattice_NtwinSystem(1:f-1_pInt,p))+j, &
sum(lattice_NtwinSystem(1:o-1_pInt,p))+k, &
p))
p),1)
enddo otherTwinSystems; enddo otherTwinFamilies
enddo myTwinSystems
enddo myTwinFamilies
prm%interaction_TwinSlip = temp1; deallocate(temp1)
prm%interaction_TwinTwin = temp2; deallocate(temp2)
!--------------------------------------------------------------------------------------------------
! locally defined state aliases and initialization of state0 and aTolState
@ -448,7 +461,6 @@ subroutine plastic_phenopowerlaw_init
plasticState(p)%accumulatedSlip => &
plasticState(p)%state(offset_slip+1:offset_slip+plasticState(p)%nSlip,1:NipcMyPhase)
endif
enddo
@ -505,11 +517,14 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,
dLp_dTstar3333 !< derivative of Lp with respect to Tstar as 4th order tensor
real(pReal), dimension(3,3,2) :: &
nonSchmid_tensor
type(tParameters), pointer :: prm
of = phasememberAt(ipc,ip,el)
ph = phaseAt(ipc,ip,el)
instance = phase_plasticityInstance(ph)
prm => param(instance)
Lp = 0.0_pReal
dLp_dTstar3333 = 0.0_pReal
dLp_dTstar99 = 0.0_pReal
@ -517,9 +532,9 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,
!--------------------------------------------------------------------------------------------------
! Slip part
j = 0_pInt
slipFamilies: do f = 1_pInt,size(param(instance)%Nslip,1)
slipFamilies: do f = 1_pInt,size(prm%Nslip,1)
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
slipSystems: do i = 1_pInt,param(instance)%Nslip(f)
slipSystems: do i = 1_pInt,prm%Nslip(f)
j = j+1_pInt
! Calculation of Lp
@ -527,30 +542,30 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,
tau_slip_neg = tau_slip_pos
nonSchmid_tensor(1:3,1:3,1) = lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph)
nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,1)
do k = 1,size(param(instance)%nonSchmidCoeff)
tau_slip_pos = tau_slip_pos + param(instance)%nonSchmidCoeff(k)* &
do k = 1,size(prm%nonSchmidCoeff)
tau_slip_pos = tau_slip_pos + prm%nonSchmidCoeff(k)* &
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,ph))
tau_slip_neg = tau_slip_neg + param(instance)%nonSchmidCoeff(k)* &
tau_slip_neg = tau_slip_neg + prm%nonSchmidCoeff(k)* &
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph))
nonSchmid_tensor(1:3,1:3,1) = nonSchmid_tensor(1:3,1:3,1) + param(instance)%nonSchmidCoeff(k)*&
nonSchmid_tensor(1:3,1:3,1) = nonSchmid_tensor(1:3,1:3,1) + prm%nonSchmidCoeff(k)*&
lattice_Sslip(1:3,1:3,2*k,index_myFamily+i,ph)
nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,2) + param(instance)%nonSchmidCoeff(k)*&
nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,2) + prm%nonSchmidCoeff(k)*&
lattice_Sslip(1:3,1:3,2*k+1,index_myFamily+i,ph)
enddo
gdot_slip_pos = 0.5_pReal*param(instance)%gdot0_slip* &
gdot_slip_pos = 0.5_pReal*prm%gdot0_slip* &
((abs(tau_slip_pos)/(state(instance)%s_slip(j,of))) &
**param(instance)%n_slip)*sign(1.0_pReal,tau_slip_pos)
**prm%n_slip)*sign(1.0_pReal,tau_slip_pos)
gdot_slip_neg = 0.5_pReal*param(instance)%gdot0_slip* &
gdot_slip_neg = 0.5_pReal*prm%gdot0_slip* &
((abs(tau_slip_neg)/(state(instance)%s_slip(j,of))) &
**param(instance)%n_slip)*sign(1.0_pReal,tau_slip_neg)
**prm%n_slip)*sign(1.0_pReal,tau_slip_neg)
Lp = Lp + (1.0_pReal-state(instance)%sumF(of))*& ! 1-F
(gdot_slip_pos+gdot_slip_neg)*lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph)
! Calculation of the tangent of Lp
if (dNeq0(gdot_slip_pos)) then
dgdot_dtauslip_pos = gdot_slip_pos*param(instance)%n_slip/tau_slip_pos
dgdot_dtauslip_pos = gdot_slip_pos*prm%n_slip/tau_slip_pos
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + &
dgdot_dtauslip_pos*lattice_Sslip(k,l,1,index_myFamily+i,ph)* &
@ -558,7 +573,7 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,
endif
if (dNeq0(gdot_slip_neg)) then
dgdot_dtauslip_neg = gdot_slip_neg*param(instance)%n_slip/tau_slip_neg
dgdot_dtauslip_neg = gdot_slip_neg*prm%n_slip/tau_slip_neg
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + &
dgdot_dtauslip_neg*lattice_Sslip(k,l,1,index_myFamily+i,ph)* &
@ -570,22 +585,22 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,
!--------------------------------------------------------------------------------------------------
! Twinning part
j = 0_pInt
twinFamilies: do f = 1_pInt,size(param(instance)%Ntwin,1)
twinFamilies: do f = 1_pInt,size(prm%Ntwin,1)
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
twinSystems: do i = 1_pInt,param(instance)%Ntwin(f)
twinSystems: do i = 1_pInt,prm%Ntwin(f)
j = j+1_pInt
! Calculation of Lp
tau_twin = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,ph))
gdot_twin = (1.0_pReal-state(instance)%sumF(of))*& ! 1-F
param(instance)%gdot0_twin*&
prm%gdot0_twin*&
(abs(tau_twin)/state(instance)%s_twin(j,of))**&
param(instance)%n_twin*max(0.0_pReal,sign(1.0_pReal,tau_twin))
prm%n_twin*max(0.0_pReal,sign(1.0_pReal,tau_twin))
Lp = Lp + gdot_twin*lattice_Stwin(1:3,1:3,index_myFamily+i,ph)
! Calculation of the tangent of Lp
if (dNeq0(gdot_twin)) then
dgdot_dtautwin = gdot_twin*param(instance)%n_twin/tau_twin
dgdot_dtautwin = gdot_twin*prm%n_twin/tau_twin
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + &
dgdot_dtautwin*lattice_Stwin(k,l,index_myFamily+i,ph)* &
@ -628,7 +643,7 @@ subroutine plastic_phenopowerlaw_dotState(Tstar_v,ipc,ip,el)
integer(pInt) :: &
instance,ph, &
f,i,j,k, &
index_myFamily, nslip,ntwin,&
index_myFamily, &
of
real(pReal) :: &
c_SlipSlip,c_TwinSlip,c_TwinTwin, &
@ -639,67 +654,63 @@ subroutine plastic_phenopowerlaw_dotState(Tstar_v,ipc,ip,el)
gdot_slip,left_SlipSlip,left_SlipTwin,right_SlipSlip,right_TwinSlip
real(pReal), dimension(plasticState(material_phase(ipc,ip,el))%Ntwin) :: &
gdot_twin,left_TwinSlip,left_TwinTwin,right_SlipTwin,right_TwinTwin
type(tParameters), pointer :: prm
type(tPhenopowerlawState), pointer :: stt
of = phasememberAt(ipc,ip,el)
ph = phaseAt(ipc,ip,el)
instance = phase_plasticityInstance(ph)
prm => param(instance)
stt => state(instance)
nSlip= sum(param(instance)%nslip)
nTwin= sum(param(instance)%nTwin)
plasticState(ph)%dotState(:,of) = 0.0_pReal
!--------------------------------------------------------------------------------------------------
! system-independent (nonlinear) prefactors to M_Xx (X influenced by x) matrices
c_SlipSlip = param(instance)%h0_slipslip*&
(1.0_pReal + param(instance)%twinC*state(instance)%sumF(of)**&
param(instance)%twinB)
c_TwinSlip = param(instance)%h0_TwinSlip*&
state(instance)%sumGamma(of)**param(instance)%twinE
c_TwinTwin = param(instance)%h0_TwinTwin*&
state(instance)%sumF(of)**param(instance)%twinD
c_SlipSlip = prm%h0_slipslip*(1.0_pReal + prm%twinC*stt%sumF(of)** prm%twinB)
c_TwinSlip = prm%h0_TwinSlip*stt%sumGamma(of)**prm%twinE
c_TwinTwin = prm%h0_TwinTwin*stt%sumF(of)**prm%twinD
!--------------------------------------------------------------------------------------------------
! calculate left and right vectors and calculate dot gammas
ssat_offset = param(instance)%spr*sqrt(state(instance)%sumF(of))
ssat_offset = prm%spr*sqrt(stt%sumF(of))
j = 0_pInt
slipFamilies1: do f =1_pInt,size(param(instance)%Nslip,1)
slipFamilies1: do f =1_pInt,size(prm%Nslip,1)
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
slipSystems1: do i = 1_pInt,param(instance)%Nslip(f)
slipSystems1: do i = 1_pInt,prm%Nslip(f)
j = j+1_pInt
left_SlipSlip(j) = 1.0_pReal + param(instance)%H_int(f) ! modified no system-dependent left part
left_SlipSlip(j) = 1.0_pReal + prm%H_int(f) ! modified no system-dependent left part
left_SlipTwin(j) = 1.0_pReal ! no system-dependent left part
right_SlipSlip(j) = abs(1.0_pReal-state(instance)%s_slip(j,of) / &
(param(instance)%tausat_slip(f)+ssat_offset)) &
**param(instance)%a_slip&
*sign(1.0_pReal,1.0_pReal-state(instance)%s_slip(j,of) / &
(param(instance)%tausat_slip(f)+ssat_offset))
right_SlipSlip(j) = abs(1.0_pReal-stt%s_slip(j,of) / &
(prm%tausat_slip(f)+ssat_offset)) &
**prm%a_slip&
*sign(1.0_pReal,1.0_pReal-stt%s_slip(j,of) / &
(prm%tausat_slip(f)+ssat_offset))
right_TwinSlip(j) = 1.0_pReal ! no system-dependent part
!--------------------------------------------------------------------------------------------------
! Calculation of dot gamma
tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph))
tau_slip_neg = tau_slip_pos
nonSchmidSystems: do k = 1,size(param(instance)%nonSchmidCoeff)
tau_slip_pos = tau_slip_pos + param(instance)%nonSchmidCoeff(k)* &
nonSchmidSystems: do k = 1,size(prm%nonSchmidCoeff)
tau_slip_pos = tau_slip_pos + prm%nonSchmidCoeff(k)* &
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k, index_myFamily+i,ph))
tau_slip_neg = tau_slip_neg +param(instance)%nonSchmidCoeff(k)* &
tau_slip_neg = tau_slip_neg +prm%nonSchmidCoeff(k)* &
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph))
enddo nonSchmidSystems
gdot_slip(j) = param(instance)%gdot0_slip*0.5_pReal* &
((abs(tau_slip_pos)/(state(instance)%s_slip(j,of)))**param(instance)%n_slip &
*sign(1.0_pReal,tau_slip_pos) &
+(abs(tau_slip_neg)/(state(instance)%s_slip(j,of)))**param(instance)%n_slip &
*sign(1.0_pReal,tau_slip_neg))
gdot_slip(j) = prm%gdot0_slip*0.5_pReal* &
( (abs(tau_slip_pos)/(stt%s_slip(j,of)))**prm%n_slip*sign(1.0_pReal,tau_slip_pos) &
+(abs(tau_slip_neg)/(stt%s_slip(j,of)))**prm%n_slip*sign(1.0_pReal,tau_slip_neg))
enddo slipSystems1
enddo slipFamilies1
j = 0_pInt
twinFamilies1: do f = 1_pInt,size(param(instance)%Ntwin,1)
twinFamilies1: do f = 1_pInt,size(prm%Ntwin,1)
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
twinSystems1: do i = 1_pInt,param(instance)%Ntwin(f)
twinSystems1: do i = 1_pInt,prm%Ntwin(f)
j = j+1_pInt
left_TwinSlip(j) = 1.0_pReal ! no system-dependent left part
left_TwinTwin(j) = 1.0_pReal ! no system-dependent left part
@ -709,24 +720,24 @@ subroutine plastic_phenopowerlaw_dotState(Tstar_v,ipc,ip,el)
!--------------------------------------------------------------------------------------------------
! Calculation of dot vol frac
tau_twin = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,ph))
gdot_twin(j) = (1.0_pReal-state(instance)%sumF(of))*& ! 1-F
param(instance)%gdot0_twin*&
(abs(tau_twin)/state(instance)%s_twin(j,of))**&
param(instance)%n_twin*max(0.0_pReal,sign(1.0_pReal,tau_twin))
gdot_twin(j) = (1.0_pReal-stt%sumF(of))*& ! 1-F
prm%gdot0_twin*&
(abs(tau_twin)/stt%s_twin(j,of))**&
prm%n_twin*max(0.0_pReal,sign(1.0_pReal,tau_twin))
enddo twinSystems1
enddo twinFamilies1
!--------------------------------------------------------------------------------------------------
! calculate the overall hardening based on above
j = 0_pInt
slipFamilies2: do f = 1_pInt,size(param(instance)%Nslip,1)
slipSystems2: do i = 1_pInt,param(instance)%Nslip(f)
slipFamilies2: do f = 1_pInt,size(prm%Nslip,1)
slipSystems2: do i = 1_pInt,prm%Nslip(f)
j = j+1_pInt
dotState(instance)%s_slip(j,of) = & ! evolution of slip resistance j
c_SlipSlip * left_SlipSlip(j) * &
dot_product(param(instance)%matrix_SlipSlip(j,1:nslip), &
dot_product(prm%interaction_SlipSlip(j,1:prm%totalNslip), &
right_SlipSlip*abs(gdot_slip)) + & ! dot gamma_slip modulated by right-side slip factor
dot_product(param(instance)%matrix_SlipTwin(j,1:ntwin), &
dot_product(prm%interaction_SlipTwin(j,1:prm%totalNtwin), &
right_SlipTwin*gdot_twin) ! dot gamma_twin modulated by right-side twin factor
dotState(instance)%sumGamma(of) = dotState(instance)%sumGamma(of) + &
abs(gdot_slip(j))
@ -735,16 +746,16 @@ subroutine plastic_phenopowerlaw_dotState(Tstar_v,ipc,ip,el)
enddo slipFamilies2
j = 0_pInt
twinFamilies2: do f = 1_pInt,size(param(instance)%Ntwin,1)
twinFamilies2: do f = 1_pInt,size(prm%Ntwin,1)
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
twinSystems2: do i = 1_pInt,param(instance)%Ntwin(f)
twinSystems2: do i = 1_pInt,prm%Ntwin(f)
j = j+1_pInt
dotState(instance)%s_twin(j,of) = & ! evolution of twin resistance j
c_TwinSlip * left_TwinSlip(j) * &
dot_product(param(instance)%matrix_TwinSlip(j,1:nslip), &
dot_product(prm%interaction_TwinSlip(j,1:prm%totalNslip), &
right_TwinSlip*abs(gdot_slip)) + & ! dot gamma_slip modulated by right-side slip factor
c_TwinTwin * left_TwinTwin(j) * &
dot_product(param(instance)%matrix_TwinTwin(j,1:ntwin), &
dot_product(prm%interaction_TwinTwin(j,1:prm%totalNtwin), &
right_TwinTwin*gdot_twin) ! dot gamma_twin modulated by right-side twin factor
if (state(instance)%sumF(of) < 0.98_pReal) & ! ensure twin volume fractions stays below 1.0
dotState(instance)%sumF(of) = dotState(instance)%sumF(of) + &
@ -787,18 +798,17 @@ function plastic_phenopowerlaw_postResults(Tstar_v,ipc,ip,el)
integer(pInt) :: &
instance,ph, of, &
nSlip,nTwin, &
o,f,i,c,j,k, &
index_myFamily
real(pReal) :: &
tau_slip_pos,tau_slip_neg,tau
type(tParameters), pointer :: prm
of = phasememberAt(ipc,ip,el)
ph = phaseAt(ipc,ip,el)
instance = phase_plasticityInstance(ph)
prm => param(instance)
nSlip= sum(param(instance)%nslip)
nTwin= sum(param(instance)%nTwin)
plastic_phenopowerlaw_postResults = 0.0_pReal
c = 0_pInt
@ -806,12 +816,12 @@ function plastic_phenopowerlaw_postResults(Tstar_v,ipc,ip,el)
outputsLoop: do o = 1_pInt,size(param(instance)%outputID)
select case(param(instance)%outputID(o))
case (resistance_slip_ID)
plastic_phenopowerlaw_postResults(c+1_pInt:c+nSlip) = state(instance)%s_slip(1:nSlip,of)
c = c + nSlip
plastic_phenopowerlaw_postResults(c+1_pInt:c+prm%totalNslip) = state(instance)%s_slip(1:prm%totalNslip,of)
c = c + prm%totalNslip
case (accumulatedshear_slip_ID)
plastic_phenopowerlaw_postResults(c+1_pInt:c+nSlip) = state(instance)%accshear_slip(1:nSlip,of)
c = c + nSlip
plastic_phenopowerlaw_postResults(c+1_pInt:c+prm%totalNslip) = state(instance)%accshear_slip(1:prm%totalNslip,of)
c = c + prm%totalNslip
case (shearrate_slip_ID)
j = 0_pInt
@ -834,7 +844,7 @@ function plastic_phenopowerlaw_postResults(Tstar_v,ipc,ip,el)
*sign(1.0_pReal,tau_slip_neg))
enddo slipSystems1
enddo slipFamilies1
c = c + nSlip
c = c + prm%totalNslip
case (resolvedstress_slip_ID)
j = 0_pInt
@ -846,7 +856,7 @@ function plastic_phenopowerlaw_postResults(Tstar_v,ipc,ip,el)
dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph))
enddo slipSystems2
enddo slipFamilies2
c = c + nSlip
c = c + prm%totalNslip
case (totalshear_ID)
plastic_phenopowerlaw_postResults(c+1_pInt) = &
@ -854,14 +864,14 @@ function plastic_phenopowerlaw_postResults(Tstar_v,ipc,ip,el)
c = c + 1_pInt
case (resistance_twin_ID)
plastic_phenopowerlaw_postResults(c+1_pInt:c+nTwin) = &
state(instance)%s_twin(1:nTwin,of)
c = c + nTwin
plastic_phenopowerlaw_postResults(c+1_pInt:c+prm%totalNtwin) = &
state(instance)%s_twin(1:prm%totalNtwin,of)
c = c + prm%totalNtwin
case (accumulatedshear_twin_ID)
plastic_phenopowerlaw_postResults(c+1_pInt:c+nTwin) = &
state(instance)%accshear_twin(1:nTwin,of)
c = c + nTwin
plastic_phenopowerlaw_postResults(c+1_pInt:c+prm%totalNtwin) = &
state(instance)%accshear_twin(1:prm%totalNtwin,of)
c = c + prm%totalNtwin
case (shearrate_twin_ID)
j = 0_pInt
twinFamilies1: do f = 1_pInt,size(param(instance)%Ntwin,1)
@ -875,7 +885,7 @@ function plastic_phenopowerlaw_postResults(Tstar_v,ipc,ip,el)
param(instance)%n_twin*max(0.0_pReal,sign(1.0_pReal,tau))
enddo twinSystems1
enddo twinFamilies1
c = c + nTwin
c = c + prm%totalNtwin
case (resolvedstress_twin_ID)
j = 0_pInt
@ -887,7 +897,7 @@ function plastic_phenopowerlaw_postResults(Tstar_v,ipc,ip,el)
dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,ph))
enddo twinSystems2
enddo twinFamilies2
c = c + nTwin
c = c + prm%totalNtwin
case (totalvolfrac_twin_ID)
plastic_phenopowerlaw_postResults(c+1_pInt) = state(instance)%sumF(of)