following ideas implemented by Philip in disloUCLA
prm and stt are pointers to instance of parameter and state interaction_xxYY is a matrix, gets shape assigned during calculation totalNslip and totalNslip are defined as derived parameter
This commit is contained in:
parent
00f34363dc
commit
ddf7584f4d
|
@ -32,6 +32,9 @@ module plastic_phenopowerlaw
|
|||
end enum
|
||||
|
||||
type, private :: tParameters !< container type for internal constitutive parameters
|
||||
integer(pInt) :: &
|
||||
totalNslip, &
|
||||
totalNtwin
|
||||
real(pReal) :: &
|
||||
gdot0_slip, & !< reference shear strain rate for slip
|
||||
gdot0_twin, & !< reference shear strain rate for twin
|
||||
|
@ -57,16 +60,12 @@ module plastic_phenopowerlaw
|
|||
tau0_twin, & !< initial critical shear stress for twin
|
||||
tausat_slip, & !< maximum critical shear stress for slip
|
||||
nonSchmidCoeff, &
|
||||
H_int, & !< per family hardening activity (optional)
|
||||
H_int !< per family hardening activity (optional)
|
||||
real(pReal), dimension(:,:), allocatable :: &
|
||||
interaction_SlipSlip, & !< slip resistance from slip activity
|
||||
interaction_SlipTwin, & !< slip resistance from twin activity
|
||||
interaction_TwinSlip, & !< twin resistance from slip activity
|
||||
interaction_TwinTwin !< twin resistance from twin activity
|
||||
real(pReal), dimension(:,:), allocatable :: &
|
||||
matrix_SlipSlip, & !< slip resistance from slip activity
|
||||
matrix_SlipTwin, & !< slip resistance from twin activity
|
||||
matrix_TwinSlip, & !< twin resistance from slip activity
|
||||
matrix_TwinTwin !< twin resistance from twin activity
|
||||
|
||||
integer(kind(undefined_ID)), dimension(:), allocatable :: &
|
||||
outputID !< ID of each post result output
|
||||
|
@ -85,7 +84,7 @@ module plastic_phenopowerlaw
|
|||
sumF
|
||||
end type
|
||||
|
||||
type(tPhenopowerlawState), allocatable, dimension(:), private :: &
|
||||
type(tPhenopowerlawState), allocatable, dimension(:), target, private :: &
|
||||
dotState, &
|
||||
state
|
||||
|
||||
|
@ -147,6 +146,8 @@ subroutine plastic_phenopowerlaw_init
|
|||
sizeState,sizeDotState, &
|
||||
startIndex, endIndex
|
||||
|
||||
real(pReal), dimension(:,:), allocatable :: temp1, temp2
|
||||
|
||||
integer(pInt), dimension(0), parameter :: emptyIntArray = [integer(pInt)::]
|
||||
real(pReal), dimension(0), parameter :: emptyRealArray = [real(pReal)::]
|
||||
character(len=65536), dimension(0), parameter :: emptyStringArray = [character(len=65536)::]
|
||||
|
@ -177,16 +178,19 @@ subroutine plastic_phenopowerlaw_init
|
|||
allocate(dotState(maxNinstance))
|
||||
|
||||
do p = 1_pInt, size(phase_plasticityInstance)
|
||||
if (phase_plasticity(p) == PLASTICITY_PHENOPOWERLAW_ID) then
|
||||
if (phase_plasticity(p) /= PLASTICITY_PHENOPOWERLAW_ID) cycle
|
||||
instance = phase_plasticityInstance(p)
|
||||
prm => param(instance)
|
||||
|
||||
prm%Nslip = config_phase(p)%getInts('nslip',defaultVal=emptyIntArray)
|
||||
!if (size > Nchunks_SlipFamilies + 1_pInt) call IO_error(150_pInt,ext_msg=extmsg)
|
||||
if (sum(prm%Nslip) > 0_pInt) then
|
||||
if (size(prm%Nslip) > count(lattice_NslipSystem(:,p) > 0_pInt)) call IO_error(150_pInt,ext_msg='Nslip')
|
||||
if (any(lattice_NslipSystem(1:size(prm%Nslip),p)-prm%Nslip < 0_pInt)) call IO_error(150_pInt,ext_msg='Nslip')
|
||||
prm%totalNslip = sum(prm%Nslip)
|
||||
|
||||
if (prm%totalNslip > 0_pInt) then
|
||||
prm%tau0_slip = config_phase(p)%getFloats('tau0_slip')
|
||||
prm%tausat_slip = config_phase(p)%getFloats('tausat_slip')
|
||||
prm%interaction_SlipSlip = config_phase(p)%getFloats('interaction_slipslip')
|
||||
prm%interaction_SlipSlip = spread(config_phase(p)%getFloats('interaction_slipslip'),2,1)
|
||||
prm%H_int = config_phase(p)%getFloats('h_int',&
|
||||
defaultVal=[(0.0_pReal,i=1_pInt,size(prm%Nslip))])
|
||||
prm%nonSchmidCoeff = config_phase(p)%getFloats('nonschmid_coefficients',&
|
||||
|
@ -199,10 +203,13 @@ subroutine plastic_phenopowerlaw_init
|
|||
endif
|
||||
|
||||
prm%Ntwin = config_phase(p)%getInts('ntwin', defaultVal=emptyIntArray)
|
||||
!if (size > Nchunks_SlipFamilies + 1_pInt) call IO_error(150_pInt,ext_msg=extmsg)
|
||||
if (sum(prm%Ntwin) > 0_pInt) then
|
||||
if (size(prm%Ntwin) > count(lattice_NtwinSystem(:,p) > 0_pInt)) call IO_error(150_pInt,ext_msg='Ntwin')
|
||||
if (any(lattice_NtwinSystem(1:size(prm%Ntwin),p)-prm%Ntwin < 0_pInt)) call IO_error(150_pInt,ext_msg='Ntwin')
|
||||
prm%totalNtwin = sum(prm%Ntwin)
|
||||
|
||||
if (prm%totalNtwin > 0_pInt) then
|
||||
prm%tau0_twin = config_phase(p)%getFloats('tau0_twin')
|
||||
prm%interaction_TwinTwin = config_phase(p)%getFloats('interaction_twintwin')
|
||||
prm%interaction_TwinTwin = spread(config_phase(p)%getFloats('interaction_twintwin'),2,1)
|
||||
|
||||
prm%gdot0_twin = config_phase(p)%getFloat('gdot0_twin')
|
||||
prm%n_twin = config_phase(p)%getFloat('n_twin')
|
||||
|
@ -214,16 +221,12 @@ subroutine plastic_phenopowerlaw_init
|
|||
prm%h0_TwinTwin = config_phase(p)%getFloat('h0_twintwin')
|
||||
endif
|
||||
|
||||
if (sum(prm%Nslip) > 0_pInt .and. sum(prm%Ntwin) > 0_pInt) then
|
||||
prm%interaction_SlipTwin = config_phase(p)%getFloats('interaction_sliptwin')
|
||||
prm%interaction_TwinSlip = config_phase(p)%getFloats('interaction_twinslip')
|
||||
if (prm%totalNslip > 0_pInt .and. prm%totalNtwin > 0_pInt) then
|
||||
prm%interaction_SlipTwin = spread(config_phase(p)%getFloats('interaction_sliptwin'),2,1)
|
||||
prm%interaction_TwinSlip = spread(config_phase(p)%getFloats('interaction_twinslip'),2,1)
|
||||
prm%h0_TwinSlip = config_phase(p)%getFloat('h0_twinslip')
|
||||
endif
|
||||
|
||||
allocate(prm%matrix_SlipSlip(sum(prm%Nslip),sum(prm%Nslip)),source =0.0_pReal)
|
||||
allocate(prm%matrix_SlipTwin(sum(prm%Nslip),sum(prm%Ntwin)),source =0.0_pReal)
|
||||
allocate(prm%matrix_TwinSlip(sum(prm%Ntwin),sum(prm%Nslip)),source =0.0_pReal)
|
||||
allocate(prm%matrix_TwinTwin(sum(prm%Ntwin),sum(prm%Ntwin)),source =0.0_pReal)
|
||||
|
||||
prm%aTolResistance = config_phase(p)%getFloat('atol_resistance',defaultVal=1.0_pReal)
|
||||
prm%aTolShear = config_phase(p)%getFloat('atol_shear',defaultVal=1.0e-6_pReal)
|
||||
|
@ -343,8 +346,11 @@ subroutine plastic_phenopowerlaw_init
|
|||
if (any(numerics_integrator == 5_pInt)) &
|
||||
allocate(plasticState(p)%RKCK45dotState (6,sizeDotState,NipcMyPhase), source=0.0_pReal)
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate hardening matrices
|
||||
allocate(temp1(sum(prm%Nslip),sum(prm%Nslip)),source =0.0_pReal)
|
||||
allocate(temp2(sum(prm%Nslip),sum(prm%Ntwin)),source =0.0_pReal)
|
||||
mySlipFamilies: do f = 1_pInt,size(prm%Nslip,1) ! >>> interaction slip -- X
|
||||
index_myFamily = sum(prm%Nslip(1:f-1_pInt))
|
||||
|
||||
|
@ -352,49 +358,56 @@ subroutine plastic_phenopowerlaw_init
|
|||
otherSlipFamilies: do o = 1_pInt,size(prm%Nslip,1)
|
||||
index_otherFamily = sum(prm%Nslip(1:o-1_pInt))
|
||||
otherSlipSystems: do k = 1_pInt,prm%Nslip(o)
|
||||
prm%matrix_SlipSlip(index_myFamily+j,index_otherFamily+k) = &
|
||||
temp1(index_myFamily+j,index_otherFamily+k) = &
|
||||
prm%interaction_SlipSlip(lattice_interactionSlipSlip( &
|
||||
sum(lattice_NslipSystem(1:f-1,p))+j, &
|
||||
sum(lattice_NslipSystem(1:o-1,p))+k, &
|
||||
p))
|
||||
p),1)
|
||||
enddo otherSlipSystems; enddo otherSlipFamilies
|
||||
|
||||
twinFamilies: do o = 1_pInt,size(prm%Ntwin,1)
|
||||
index_otherFamily = sum(prm%Ntwin(1:o-1_pInt))
|
||||
twinSystems: do k = 1_pInt,prm%Ntwin(o)
|
||||
prm%matrix_SlipTwin(index_myFamily+j,index_otherFamily+k) = &
|
||||
temp2(index_myFamily+j,index_otherFamily+k) = &
|
||||
prm%interaction_SlipTwin(lattice_interactionSlipTwin( &
|
||||
sum(lattice_NslipSystem(1:f-1_pInt,p))+j, &
|
||||
sum(lattice_NtwinSystem(1:o-1_pInt,p))+k, &
|
||||
p))
|
||||
p),1)
|
||||
enddo twinSystems; enddo twinFamilies
|
||||
enddo mySlipSystems
|
||||
enddo mySlipFamilies
|
||||
prm%interaction_SlipSlip = temp1; deallocate(temp1)
|
||||
prm%interaction_SlipTwin = temp2; deallocate(temp2)
|
||||
|
||||
|
||||
allocate(temp1(sum(prm%Ntwin),sum(prm%Nslip)),source =0.0_pReal)
|
||||
allocate(temp2(sum(prm%Ntwin),sum(prm%Ntwin)),source =0.0_pReal)
|
||||
myTwinFamilies: do f = 1_pInt,size(prm%Ntwin,1) ! >>> interaction twin -- X
|
||||
index_myFamily = sum(prm%Ntwin(1:f-1_pInt))
|
||||
myTwinSystems: do j = 1_pInt,prm%Ntwin(f)
|
||||
slipFamilies: do o = 1_pInt,size(prm%Nslip,1)
|
||||
index_otherFamily = sum(prm%Nslip(1:o-1_pInt))
|
||||
slipSystems: do k = 1_pInt,prm%Nslip(o)
|
||||
prm%matrix_TwinSlip(index_myFamily+j,index_otherFamily+k) = &
|
||||
temp1(index_myFamily+j,index_otherFamily+k) = &
|
||||
prm%interaction_TwinSlip(lattice_interactionTwinSlip( &
|
||||
sum(lattice_NtwinSystem(1:f-1_pInt,p))+j, &
|
||||
sum(lattice_NslipSystem(1:o-1_pInt,p))+k, &
|
||||
p))
|
||||
p),1)
|
||||
enddo slipSystems; enddo slipFamilies
|
||||
|
||||
otherTwinFamilies: do o = 1_pInt,size(prm%Ntwin,1)
|
||||
index_otherFamily = sum(prm%Ntwin(1:o-1_pInt))
|
||||
otherTwinSystems: do k = 1_pInt,prm%Ntwin(o)
|
||||
prm%matrix_TwinTwin(index_myFamily+j,index_otherFamily+k) = &
|
||||
temp2(index_myFamily+j,index_otherFamily+k) = &
|
||||
prm%interaction_TwinTwin(lattice_interactionTwinTwin( &
|
||||
sum(lattice_NtwinSystem(1:f-1_pInt,p))+j, &
|
||||
sum(lattice_NtwinSystem(1:o-1_pInt,p))+k, &
|
||||
p))
|
||||
p),1)
|
||||
enddo otherTwinSystems; enddo otherTwinFamilies
|
||||
enddo myTwinSystems
|
||||
enddo myTwinFamilies
|
||||
prm%interaction_TwinSlip = temp1; deallocate(temp1)
|
||||
prm%interaction_TwinTwin = temp2; deallocate(temp2)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! locally defined state aliases and initialization of state0 and aTolState
|
||||
|
@ -448,7 +461,6 @@ subroutine plastic_phenopowerlaw_init
|
|||
plasticState(p)%accumulatedSlip => &
|
||||
plasticState(p)%state(offset_slip+1:offset_slip+plasticState(p)%nSlip,1:NipcMyPhase)
|
||||
|
||||
endif
|
||||
enddo
|
||||
|
||||
|
||||
|
@ -505,11 +517,14 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,
|
|||
dLp_dTstar3333 !< derivative of Lp with respect to Tstar as 4th order tensor
|
||||
real(pReal), dimension(3,3,2) :: &
|
||||
nonSchmid_tensor
|
||||
type(tParameters), pointer :: prm
|
||||
|
||||
of = phasememberAt(ipc,ip,el)
|
||||
ph = phaseAt(ipc,ip,el)
|
||||
instance = phase_plasticityInstance(ph)
|
||||
|
||||
prm => param(instance)
|
||||
|
||||
Lp = 0.0_pReal
|
||||
dLp_dTstar3333 = 0.0_pReal
|
||||
dLp_dTstar99 = 0.0_pReal
|
||||
|
@ -517,9 +532,9 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
! Slip part
|
||||
j = 0_pInt
|
||||
slipFamilies: do f = 1_pInt,size(param(instance)%Nslip,1)
|
||||
slipFamilies: do f = 1_pInt,size(prm%Nslip,1)
|
||||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||||
slipSystems: do i = 1_pInt,param(instance)%Nslip(f)
|
||||
slipSystems: do i = 1_pInt,prm%Nslip(f)
|
||||
j = j+1_pInt
|
||||
|
||||
! Calculation of Lp
|
||||
|
@ -527,30 +542,30 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,
|
|||
tau_slip_neg = tau_slip_pos
|
||||
nonSchmid_tensor(1:3,1:3,1) = lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph)
|
||||
nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,1)
|
||||
do k = 1,size(param(instance)%nonSchmidCoeff)
|
||||
tau_slip_pos = tau_slip_pos + param(instance)%nonSchmidCoeff(k)* &
|
||||
do k = 1,size(prm%nonSchmidCoeff)
|
||||
tau_slip_pos = tau_slip_pos + prm%nonSchmidCoeff(k)* &
|
||||
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,ph))
|
||||
tau_slip_neg = tau_slip_neg + param(instance)%nonSchmidCoeff(k)* &
|
||||
tau_slip_neg = tau_slip_neg + prm%nonSchmidCoeff(k)* &
|
||||
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph))
|
||||
nonSchmid_tensor(1:3,1:3,1) = nonSchmid_tensor(1:3,1:3,1) + param(instance)%nonSchmidCoeff(k)*&
|
||||
nonSchmid_tensor(1:3,1:3,1) = nonSchmid_tensor(1:3,1:3,1) + prm%nonSchmidCoeff(k)*&
|
||||
lattice_Sslip(1:3,1:3,2*k,index_myFamily+i,ph)
|
||||
nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,2) + param(instance)%nonSchmidCoeff(k)*&
|
||||
nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,2) + prm%nonSchmidCoeff(k)*&
|
||||
lattice_Sslip(1:3,1:3,2*k+1,index_myFamily+i,ph)
|
||||
enddo
|
||||
gdot_slip_pos = 0.5_pReal*param(instance)%gdot0_slip* &
|
||||
gdot_slip_pos = 0.5_pReal*prm%gdot0_slip* &
|
||||
((abs(tau_slip_pos)/(state(instance)%s_slip(j,of))) &
|
||||
**param(instance)%n_slip)*sign(1.0_pReal,tau_slip_pos)
|
||||
**prm%n_slip)*sign(1.0_pReal,tau_slip_pos)
|
||||
|
||||
gdot_slip_neg = 0.5_pReal*param(instance)%gdot0_slip* &
|
||||
gdot_slip_neg = 0.5_pReal*prm%gdot0_slip* &
|
||||
((abs(tau_slip_neg)/(state(instance)%s_slip(j,of))) &
|
||||
**param(instance)%n_slip)*sign(1.0_pReal,tau_slip_neg)
|
||||
**prm%n_slip)*sign(1.0_pReal,tau_slip_neg)
|
||||
|
||||
Lp = Lp + (1.0_pReal-state(instance)%sumF(of))*& ! 1-F
|
||||
(gdot_slip_pos+gdot_slip_neg)*lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph)
|
||||
|
||||
! Calculation of the tangent of Lp
|
||||
if (dNeq0(gdot_slip_pos)) then
|
||||
dgdot_dtauslip_pos = gdot_slip_pos*param(instance)%n_slip/tau_slip_pos
|
||||
dgdot_dtauslip_pos = gdot_slip_pos*prm%n_slip/tau_slip_pos
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + &
|
||||
dgdot_dtauslip_pos*lattice_Sslip(k,l,1,index_myFamily+i,ph)* &
|
||||
|
@ -558,7 +573,7 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,
|
|||
endif
|
||||
|
||||
if (dNeq0(gdot_slip_neg)) then
|
||||
dgdot_dtauslip_neg = gdot_slip_neg*param(instance)%n_slip/tau_slip_neg
|
||||
dgdot_dtauslip_neg = gdot_slip_neg*prm%n_slip/tau_slip_neg
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + &
|
||||
dgdot_dtauslip_neg*lattice_Sslip(k,l,1,index_myFamily+i,ph)* &
|
||||
|
@ -570,22 +585,22 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
! Twinning part
|
||||
j = 0_pInt
|
||||
twinFamilies: do f = 1_pInt,size(param(instance)%Ntwin,1)
|
||||
twinFamilies: do f = 1_pInt,size(prm%Ntwin,1)
|
||||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||||
twinSystems: do i = 1_pInt,param(instance)%Ntwin(f)
|
||||
twinSystems: do i = 1_pInt,prm%Ntwin(f)
|
||||
j = j+1_pInt
|
||||
|
||||
! Calculation of Lp
|
||||
tau_twin = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,ph))
|
||||
gdot_twin = (1.0_pReal-state(instance)%sumF(of))*& ! 1-F
|
||||
param(instance)%gdot0_twin*&
|
||||
prm%gdot0_twin*&
|
||||
(abs(tau_twin)/state(instance)%s_twin(j,of))**&
|
||||
param(instance)%n_twin*max(0.0_pReal,sign(1.0_pReal,tau_twin))
|
||||
prm%n_twin*max(0.0_pReal,sign(1.0_pReal,tau_twin))
|
||||
Lp = Lp + gdot_twin*lattice_Stwin(1:3,1:3,index_myFamily+i,ph)
|
||||
|
||||
! Calculation of the tangent of Lp
|
||||
if (dNeq0(gdot_twin)) then
|
||||
dgdot_dtautwin = gdot_twin*param(instance)%n_twin/tau_twin
|
||||
dgdot_dtautwin = gdot_twin*prm%n_twin/tau_twin
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + &
|
||||
dgdot_dtautwin*lattice_Stwin(k,l,index_myFamily+i,ph)* &
|
||||
|
@ -628,7 +643,7 @@ subroutine plastic_phenopowerlaw_dotState(Tstar_v,ipc,ip,el)
|
|||
integer(pInt) :: &
|
||||
instance,ph, &
|
||||
f,i,j,k, &
|
||||
index_myFamily, nslip,ntwin,&
|
||||
index_myFamily, &
|
||||
of
|
||||
real(pReal) :: &
|
||||
c_SlipSlip,c_TwinSlip,c_TwinTwin, &
|
||||
|
@ -639,67 +654,63 @@ subroutine plastic_phenopowerlaw_dotState(Tstar_v,ipc,ip,el)
|
|||
gdot_slip,left_SlipSlip,left_SlipTwin,right_SlipSlip,right_TwinSlip
|
||||
real(pReal), dimension(plasticState(material_phase(ipc,ip,el))%Ntwin) :: &
|
||||
gdot_twin,left_TwinSlip,left_TwinTwin,right_SlipTwin,right_TwinTwin
|
||||
type(tParameters), pointer :: prm
|
||||
type(tPhenopowerlawState), pointer :: stt
|
||||
|
||||
of = phasememberAt(ipc,ip,el)
|
||||
ph = phaseAt(ipc,ip,el)
|
||||
instance = phase_plasticityInstance(ph)
|
||||
prm => param(instance)
|
||||
stt => state(instance)
|
||||
|
||||
nSlip= sum(param(instance)%nslip)
|
||||
nTwin= sum(param(instance)%nTwin)
|
||||
|
||||
plasticState(ph)%dotState(:,of) = 0.0_pReal
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! system-independent (nonlinear) prefactors to M_Xx (X influenced by x) matrices
|
||||
c_SlipSlip = param(instance)%h0_slipslip*&
|
||||
(1.0_pReal + param(instance)%twinC*state(instance)%sumF(of)**&
|
||||
param(instance)%twinB)
|
||||
c_TwinSlip = param(instance)%h0_TwinSlip*&
|
||||
state(instance)%sumGamma(of)**param(instance)%twinE
|
||||
c_TwinTwin = param(instance)%h0_TwinTwin*&
|
||||
state(instance)%sumF(of)**param(instance)%twinD
|
||||
c_SlipSlip = prm%h0_slipslip*(1.0_pReal + prm%twinC*stt%sumF(of)** prm%twinB)
|
||||
c_TwinSlip = prm%h0_TwinSlip*stt%sumGamma(of)**prm%twinE
|
||||
c_TwinTwin = prm%h0_TwinTwin*stt%sumF(of)**prm%twinD
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate left and right vectors and calculate dot gammas
|
||||
ssat_offset = param(instance)%spr*sqrt(state(instance)%sumF(of))
|
||||
ssat_offset = prm%spr*sqrt(stt%sumF(of))
|
||||
j = 0_pInt
|
||||
slipFamilies1: do f =1_pInt,size(param(instance)%Nslip,1)
|
||||
slipFamilies1: do f =1_pInt,size(prm%Nslip,1)
|
||||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||||
slipSystems1: do i = 1_pInt,param(instance)%Nslip(f)
|
||||
slipSystems1: do i = 1_pInt,prm%Nslip(f)
|
||||
j = j+1_pInt
|
||||
left_SlipSlip(j) = 1.0_pReal + param(instance)%H_int(f) ! modified no system-dependent left part
|
||||
left_SlipSlip(j) = 1.0_pReal + prm%H_int(f) ! modified no system-dependent left part
|
||||
left_SlipTwin(j) = 1.0_pReal ! no system-dependent left part
|
||||
right_SlipSlip(j) = abs(1.0_pReal-state(instance)%s_slip(j,of) / &
|
||||
(param(instance)%tausat_slip(f)+ssat_offset)) &
|
||||
**param(instance)%a_slip&
|
||||
*sign(1.0_pReal,1.0_pReal-state(instance)%s_slip(j,of) / &
|
||||
(param(instance)%tausat_slip(f)+ssat_offset))
|
||||
right_SlipSlip(j) = abs(1.0_pReal-stt%s_slip(j,of) / &
|
||||
(prm%tausat_slip(f)+ssat_offset)) &
|
||||
**prm%a_slip&
|
||||
*sign(1.0_pReal,1.0_pReal-stt%s_slip(j,of) / &
|
||||
(prm%tausat_slip(f)+ssat_offset))
|
||||
right_TwinSlip(j) = 1.0_pReal ! no system-dependent part
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Calculation of dot gamma
|
||||
tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph))
|
||||
tau_slip_neg = tau_slip_pos
|
||||
nonSchmidSystems: do k = 1,size(param(instance)%nonSchmidCoeff)
|
||||
tau_slip_pos = tau_slip_pos + param(instance)%nonSchmidCoeff(k)* &
|
||||
nonSchmidSystems: do k = 1,size(prm%nonSchmidCoeff)
|
||||
tau_slip_pos = tau_slip_pos + prm%nonSchmidCoeff(k)* &
|
||||
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k, index_myFamily+i,ph))
|
||||
tau_slip_neg = tau_slip_neg +param(instance)%nonSchmidCoeff(k)* &
|
||||
tau_slip_neg = tau_slip_neg +prm%nonSchmidCoeff(k)* &
|
||||
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph))
|
||||
enddo nonSchmidSystems
|
||||
gdot_slip(j) = param(instance)%gdot0_slip*0.5_pReal* &
|
||||
((abs(tau_slip_pos)/(state(instance)%s_slip(j,of)))**param(instance)%n_slip &
|
||||
*sign(1.0_pReal,tau_slip_pos) &
|
||||
+(abs(tau_slip_neg)/(state(instance)%s_slip(j,of)))**param(instance)%n_slip &
|
||||
*sign(1.0_pReal,tau_slip_neg))
|
||||
gdot_slip(j) = prm%gdot0_slip*0.5_pReal* &
|
||||
( (abs(tau_slip_pos)/(stt%s_slip(j,of)))**prm%n_slip*sign(1.0_pReal,tau_slip_pos) &
|
||||
+(abs(tau_slip_neg)/(stt%s_slip(j,of)))**prm%n_slip*sign(1.0_pReal,tau_slip_neg))
|
||||
enddo slipSystems1
|
||||
enddo slipFamilies1
|
||||
|
||||
|
||||
|
||||
j = 0_pInt
|
||||
twinFamilies1: do f = 1_pInt,size(param(instance)%Ntwin,1)
|
||||
twinFamilies1: do f = 1_pInt,size(prm%Ntwin,1)
|
||||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||||
twinSystems1: do i = 1_pInt,param(instance)%Ntwin(f)
|
||||
twinSystems1: do i = 1_pInt,prm%Ntwin(f)
|
||||
j = j+1_pInt
|
||||
left_TwinSlip(j) = 1.0_pReal ! no system-dependent left part
|
||||
left_TwinTwin(j) = 1.0_pReal ! no system-dependent left part
|
||||
|
@ -709,24 +720,24 @@ subroutine plastic_phenopowerlaw_dotState(Tstar_v,ipc,ip,el)
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
! Calculation of dot vol frac
|
||||
tau_twin = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,ph))
|
||||
gdot_twin(j) = (1.0_pReal-state(instance)%sumF(of))*& ! 1-F
|
||||
param(instance)%gdot0_twin*&
|
||||
(abs(tau_twin)/state(instance)%s_twin(j,of))**&
|
||||
param(instance)%n_twin*max(0.0_pReal,sign(1.0_pReal,tau_twin))
|
||||
gdot_twin(j) = (1.0_pReal-stt%sumF(of))*& ! 1-F
|
||||
prm%gdot0_twin*&
|
||||
(abs(tau_twin)/stt%s_twin(j,of))**&
|
||||
prm%n_twin*max(0.0_pReal,sign(1.0_pReal,tau_twin))
|
||||
enddo twinSystems1
|
||||
enddo twinFamilies1
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate the overall hardening based on above
|
||||
j = 0_pInt
|
||||
slipFamilies2: do f = 1_pInt,size(param(instance)%Nslip,1)
|
||||
slipSystems2: do i = 1_pInt,param(instance)%Nslip(f)
|
||||
slipFamilies2: do f = 1_pInt,size(prm%Nslip,1)
|
||||
slipSystems2: do i = 1_pInt,prm%Nslip(f)
|
||||
j = j+1_pInt
|
||||
dotState(instance)%s_slip(j,of) = & ! evolution of slip resistance j
|
||||
c_SlipSlip * left_SlipSlip(j) * &
|
||||
dot_product(param(instance)%matrix_SlipSlip(j,1:nslip), &
|
||||
dot_product(prm%interaction_SlipSlip(j,1:prm%totalNslip), &
|
||||
right_SlipSlip*abs(gdot_slip)) + & ! dot gamma_slip modulated by right-side slip factor
|
||||
dot_product(param(instance)%matrix_SlipTwin(j,1:ntwin), &
|
||||
dot_product(prm%interaction_SlipTwin(j,1:prm%totalNtwin), &
|
||||
right_SlipTwin*gdot_twin) ! dot gamma_twin modulated by right-side twin factor
|
||||
dotState(instance)%sumGamma(of) = dotState(instance)%sumGamma(of) + &
|
||||
abs(gdot_slip(j))
|
||||
|
@ -735,16 +746,16 @@ subroutine plastic_phenopowerlaw_dotState(Tstar_v,ipc,ip,el)
|
|||
enddo slipFamilies2
|
||||
|
||||
j = 0_pInt
|
||||
twinFamilies2: do f = 1_pInt,size(param(instance)%Ntwin,1)
|
||||
twinFamilies2: do f = 1_pInt,size(prm%Ntwin,1)
|
||||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||||
twinSystems2: do i = 1_pInt,param(instance)%Ntwin(f)
|
||||
twinSystems2: do i = 1_pInt,prm%Ntwin(f)
|
||||
j = j+1_pInt
|
||||
dotState(instance)%s_twin(j,of) = & ! evolution of twin resistance j
|
||||
c_TwinSlip * left_TwinSlip(j) * &
|
||||
dot_product(param(instance)%matrix_TwinSlip(j,1:nslip), &
|
||||
dot_product(prm%interaction_TwinSlip(j,1:prm%totalNslip), &
|
||||
right_TwinSlip*abs(gdot_slip)) + & ! dot gamma_slip modulated by right-side slip factor
|
||||
c_TwinTwin * left_TwinTwin(j) * &
|
||||
dot_product(param(instance)%matrix_TwinTwin(j,1:ntwin), &
|
||||
dot_product(prm%interaction_TwinTwin(j,1:prm%totalNtwin), &
|
||||
right_TwinTwin*gdot_twin) ! dot gamma_twin modulated by right-side twin factor
|
||||
if (state(instance)%sumF(of) < 0.98_pReal) & ! ensure twin volume fractions stays below 1.0
|
||||
dotState(instance)%sumF(of) = dotState(instance)%sumF(of) + &
|
||||
|
@ -787,18 +798,17 @@ function plastic_phenopowerlaw_postResults(Tstar_v,ipc,ip,el)
|
|||
|
||||
integer(pInt) :: &
|
||||
instance,ph, of, &
|
||||
nSlip,nTwin, &
|
||||
o,f,i,c,j,k, &
|
||||
index_myFamily
|
||||
real(pReal) :: &
|
||||
tau_slip_pos,tau_slip_neg,tau
|
||||
type(tParameters), pointer :: prm
|
||||
|
||||
of = phasememberAt(ipc,ip,el)
|
||||
ph = phaseAt(ipc,ip,el)
|
||||
instance = phase_plasticityInstance(ph)
|
||||
prm => param(instance)
|
||||
|
||||
nSlip= sum(param(instance)%nslip)
|
||||
nTwin= sum(param(instance)%nTwin)
|
||||
|
||||
plastic_phenopowerlaw_postResults = 0.0_pReal
|
||||
c = 0_pInt
|
||||
|
@ -806,12 +816,12 @@ function plastic_phenopowerlaw_postResults(Tstar_v,ipc,ip,el)
|
|||
outputsLoop: do o = 1_pInt,size(param(instance)%outputID)
|
||||
select case(param(instance)%outputID(o))
|
||||
case (resistance_slip_ID)
|
||||
plastic_phenopowerlaw_postResults(c+1_pInt:c+nSlip) = state(instance)%s_slip(1:nSlip,of)
|
||||
c = c + nSlip
|
||||
plastic_phenopowerlaw_postResults(c+1_pInt:c+prm%totalNslip) = state(instance)%s_slip(1:prm%totalNslip,of)
|
||||
c = c + prm%totalNslip
|
||||
|
||||
case (accumulatedshear_slip_ID)
|
||||
plastic_phenopowerlaw_postResults(c+1_pInt:c+nSlip) = state(instance)%accshear_slip(1:nSlip,of)
|
||||
c = c + nSlip
|
||||
plastic_phenopowerlaw_postResults(c+1_pInt:c+prm%totalNslip) = state(instance)%accshear_slip(1:prm%totalNslip,of)
|
||||
c = c + prm%totalNslip
|
||||
|
||||
case (shearrate_slip_ID)
|
||||
j = 0_pInt
|
||||
|
@ -834,7 +844,7 @@ function plastic_phenopowerlaw_postResults(Tstar_v,ipc,ip,el)
|
|||
*sign(1.0_pReal,tau_slip_neg))
|
||||
enddo slipSystems1
|
||||
enddo slipFamilies1
|
||||
c = c + nSlip
|
||||
c = c + prm%totalNslip
|
||||
|
||||
case (resolvedstress_slip_ID)
|
||||
j = 0_pInt
|
||||
|
@ -846,7 +856,7 @@ function plastic_phenopowerlaw_postResults(Tstar_v,ipc,ip,el)
|
|||
dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph))
|
||||
enddo slipSystems2
|
||||
enddo slipFamilies2
|
||||
c = c + nSlip
|
||||
c = c + prm%totalNslip
|
||||
|
||||
case (totalshear_ID)
|
||||
plastic_phenopowerlaw_postResults(c+1_pInt) = &
|
||||
|
@ -854,14 +864,14 @@ function plastic_phenopowerlaw_postResults(Tstar_v,ipc,ip,el)
|
|||
c = c + 1_pInt
|
||||
|
||||
case (resistance_twin_ID)
|
||||
plastic_phenopowerlaw_postResults(c+1_pInt:c+nTwin) = &
|
||||
state(instance)%s_twin(1:nTwin,of)
|
||||
c = c + nTwin
|
||||
plastic_phenopowerlaw_postResults(c+1_pInt:c+prm%totalNtwin) = &
|
||||
state(instance)%s_twin(1:prm%totalNtwin,of)
|
||||
c = c + prm%totalNtwin
|
||||
|
||||
case (accumulatedshear_twin_ID)
|
||||
plastic_phenopowerlaw_postResults(c+1_pInt:c+nTwin) = &
|
||||
state(instance)%accshear_twin(1:nTwin,of)
|
||||
c = c + nTwin
|
||||
plastic_phenopowerlaw_postResults(c+1_pInt:c+prm%totalNtwin) = &
|
||||
state(instance)%accshear_twin(1:prm%totalNtwin,of)
|
||||
c = c + prm%totalNtwin
|
||||
case (shearrate_twin_ID)
|
||||
j = 0_pInt
|
||||
twinFamilies1: do f = 1_pInt,size(param(instance)%Ntwin,1)
|
||||
|
@ -875,7 +885,7 @@ function plastic_phenopowerlaw_postResults(Tstar_v,ipc,ip,el)
|
|||
param(instance)%n_twin*max(0.0_pReal,sign(1.0_pReal,tau))
|
||||
enddo twinSystems1
|
||||
enddo twinFamilies1
|
||||
c = c + nTwin
|
||||
c = c + prm%totalNtwin
|
||||
|
||||
case (resolvedstress_twin_ID)
|
||||
j = 0_pInt
|
||||
|
@ -887,7 +897,7 @@ function plastic_phenopowerlaw_postResults(Tstar_v,ipc,ip,el)
|
|||
dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,ph))
|
||||
enddo twinSystems2
|
||||
enddo twinFamilies2
|
||||
c = c + nTwin
|
||||
c = c + prm%totalNtwin
|
||||
|
||||
case (totalvolfrac_twin_ID)
|
||||
plastic_phenopowerlaw_postResults(c+1_pInt) = state(instance)%sumF(of)
|
||||
|
|
Loading…
Reference in New Issue