Merge branch 'rotation-help-polish' into 'development'
Rotation help improvements See merge request damask/DAMASK!575
This commit is contained in:
commit
d83f0acf7f
python/damask
|
@ -721,7 +721,7 @@ class Rotation:
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
q : numpy.ndarray, shape (...,4)
|
q : numpy.ndarray, shape (...,4)
|
||||||
Unit quaternion (q_0, q_1, q_2, q_3) in positive real hemisphere, i.e. ǀqǀ = 1, q_0 ≥ 0.
|
Unit quaternion (q_0, q_1, q_2, q_3) in positive real hemisphere, i.e. ǀqǀ = 1 and q_0 ≥ 0.
|
||||||
accept_homomorph : bool, optional
|
accept_homomorph : bool, optional
|
||||||
Allow homomorphic variants, i.e. q_0 < 0 (negative real hemisphere).
|
Allow homomorphic variants, i.e. q_0 < 0 (negative real hemisphere).
|
||||||
Defaults to False.
|
Defaults to False.
|
||||||
|
@ -777,11 +777,11 @@ class Rotation:
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def from_axis_angle(axis_angle: np.ndarray,
|
def from_axis_angle(axis_angle: np.ndarray,
|
||||||
degrees:bool = False,
|
degrees: bool = False,
|
||||||
normalize: bool = False,
|
normalize: bool = False,
|
||||||
P: Literal[1, -1] = -1) -> 'Rotation':
|
P: Literal[1, -1] = -1) -> 'Rotation':
|
||||||
"""
|
"""
|
||||||
Initialize from Axis angle pair.
|
Initialize from axis–angle pair.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
@ -818,12 +818,12 @@ class Rotation:
|
||||||
orthonormal: bool = True,
|
orthonormal: bool = True,
|
||||||
reciprocal: bool = False) -> 'Rotation':
|
reciprocal: bool = False) -> 'Rotation':
|
||||||
"""
|
"""
|
||||||
Initialize from lattice basis vectors.
|
Initialize from basis vector triplet.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
basis : numpy.ndarray, shape (...,3,3)
|
basis : numpy.ndarray, shape (...,3,3)
|
||||||
Three three-dimensional lattice basis vectors.
|
Three three-dimensional basis vectors.
|
||||||
orthonormal : bool, optional
|
orthonormal : bool, optional
|
||||||
Basis is strictly orthonormal, i.e. is free of stretch components. Defaults to True.
|
Basis is strictly orthonormal, i.e. is free of stretch components. Defaults to True.
|
||||||
reciprocal : bool, optional
|
reciprocal : bool, optional
|
||||||
|
@ -857,7 +857,7 @@ class Rotation:
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
R : numpy.ndarray, shape (...,3,3)
|
R : numpy.ndarray, shape (...,3,3)
|
||||||
Rotation matrix with det(R) = 1, R.T ∙ R = I.
|
Rotation matrix with det(R) = 1 and R.T ∙ R = I.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
return Rotation.from_basis(R)
|
return Rotation.from_basis(R)
|
||||||
|
@ -866,14 +866,14 @@ class Rotation:
|
||||||
def from_parallel(a: np.ndarray,
|
def from_parallel(a: np.ndarray,
|
||||||
b: np.ndarray ) -> 'Rotation':
|
b: np.ndarray ) -> 'Rotation':
|
||||||
"""
|
"""
|
||||||
Initialize from pairs of two orthogonal lattice basis vectors.
|
Initialize from pairs of two orthogonal basis vectors.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
a : numpy.ndarray, shape (...,2,3)
|
a : numpy.ndarray, shape (...,2,3)
|
||||||
Two three-dimensional lattice vectors of first orthogonal basis.
|
Two three-dimensional vectors of first orthogonal basis.
|
||||||
b : numpy.ndarray, shape (...,2,3)
|
b : numpy.ndarray, shape (...,2,3)
|
||||||
Corresponding three-dimensional lattice vectors of second basis.
|
Corresponding three-dimensional vectors of second basis.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
a_ = np.array(a)
|
a_ = np.array(a)
|
||||||
|
@ -896,7 +896,7 @@ class Rotation:
|
||||||
normalize: bool = False,
|
normalize: bool = False,
|
||||||
P: Literal[1, -1] = -1) -> 'Rotation':
|
P: Literal[1, -1] = -1) -> 'Rotation':
|
||||||
"""
|
"""
|
||||||
Initialize from Rodrigues–Frank vector (angle separated from axis).
|
Initialize from Rodrigues–Frank vector (with angle separated from axis).
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
|
Loading…
Reference in New Issue