slight polish of help messages

This commit is contained in:
Philip Eisenlohr 2022-05-10 15:45:19 -04:00
parent 675e9c911d
commit 75272163cd
1 changed files with 10 additions and 10 deletions

View File

@ -721,7 +721,7 @@ class Rotation:
Parameters
----------
q : numpy.ndarray, shape (...,4)
Unit quaternion (q_0, q_1, q_2, q_3) in positive real hemisphere, i.e. ǀqǀ = 1, q_0 0.
Unit quaternion (q_0, q_1, q_2, q_3) in positive real hemisphere, i.e. ǀqǀ = 1 and q_0 0.
accept_homomorph : bool, optional
Allow homomorphic variants, i.e. q_0 < 0 (negative real hemisphere).
Defaults to False.
@ -777,11 +777,11 @@ class Rotation:
@staticmethod
def from_axis_angle(axis_angle: np.ndarray,
degrees:bool = False,
degrees: bool = False,
normalize: bool = False,
P: Literal[1, -1] = -1) -> 'Rotation':
"""
Initialize from Axis angle pair.
Initialize from axisangle pair.
Parameters
----------
@ -818,12 +818,12 @@ class Rotation:
orthonormal: bool = True,
reciprocal: bool = False) -> 'Rotation':
"""
Initialize from lattice basis vectors.
Initialize from basis vector triplet.
Parameters
----------
basis : numpy.ndarray, shape (...,3,3)
Three three-dimensional lattice basis vectors.
Three three-dimensional basis vectors.
orthonormal : bool, optional
Basis is strictly orthonormal, i.e. is free of stretch components. Defaults to True.
reciprocal : bool, optional
@ -857,7 +857,7 @@ class Rotation:
Parameters
----------
R : numpy.ndarray, shape (...,3,3)
Rotation matrix with det(R) = 1, R.T R = I.
Rotation matrix with det(R) = 1 and R.T R = I.
"""
return Rotation.from_basis(R)
@ -866,14 +866,14 @@ class Rotation:
def from_parallel(a: np.ndarray,
b: np.ndarray ) -> 'Rotation':
"""
Initialize from pairs of two orthogonal lattice basis vectors.
Initialize from pairs of two orthogonal basis vectors.
Parameters
----------
a : numpy.ndarray, shape (...,2,3)
Two three-dimensional lattice vectors of first orthogonal basis.
Two three-dimensional vectors of first orthogonal basis.
b : numpy.ndarray, shape (...,2,3)
Corresponding three-dimensional lattice vectors of second basis.
Corresponding three-dimensional vectors of second basis.
"""
a_ = np.array(a)
@ -896,7 +896,7 @@ class Rotation:
normalize: bool = False,
P: Literal[1, -1] = -1) -> 'Rotation':
"""
Initialize from RodriguesFrank vector (angle separated from axis).
Initialize from RodriguesFrank vector (with angle separated from axis).
Parameters
----------