Merge branch 'rotation-help-polish' into 'development'

Rotation help improvements

See merge request damask/DAMASK!575
This commit is contained in:
Franz Roters 2022-05-13 09:18:35 +00:00
commit d83f0acf7f
1 changed files with 10 additions and 10 deletions

View File

@ -721,7 +721,7 @@ class Rotation:
Parameters Parameters
---------- ----------
q : numpy.ndarray, shape (...,4) q : numpy.ndarray, shape (...,4)
Unit quaternion (q_0, q_1, q_2, q_3) in positive real hemisphere, i.e. ǀqǀ = 1, q_0 0. Unit quaternion (q_0, q_1, q_2, q_3) in positive real hemisphere, i.e. ǀqǀ = 1 and q_0 0.
accept_homomorph : bool, optional accept_homomorph : bool, optional
Allow homomorphic variants, i.e. q_0 < 0 (negative real hemisphere). Allow homomorphic variants, i.e. q_0 < 0 (negative real hemisphere).
Defaults to False. Defaults to False.
@ -781,7 +781,7 @@ class Rotation:
normalize: bool = False, normalize: bool = False,
P: Literal[1, -1] = -1) -> 'Rotation': P: Literal[1, -1] = -1) -> 'Rotation':
""" """
Initialize from Axis angle pair. Initialize from axisangle pair.
Parameters Parameters
---------- ----------
@ -818,12 +818,12 @@ class Rotation:
orthonormal: bool = True, orthonormal: bool = True,
reciprocal: bool = False) -> 'Rotation': reciprocal: bool = False) -> 'Rotation':
""" """
Initialize from lattice basis vectors. Initialize from basis vector triplet.
Parameters Parameters
---------- ----------
basis : numpy.ndarray, shape (...,3,3) basis : numpy.ndarray, shape (...,3,3)
Three three-dimensional lattice basis vectors. Three three-dimensional basis vectors.
orthonormal : bool, optional orthonormal : bool, optional
Basis is strictly orthonormal, i.e. is free of stretch components. Defaults to True. Basis is strictly orthonormal, i.e. is free of stretch components. Defaults to True.
reciprocal : bool, optional reciprocal : bool, optional
@ -857,7 +857,7 @@ class Rotation:
Parameters Parameters
---------- ----------
R : numpy.ndarray, shape (...,3,3) R : numpy.ndarray, shape (...,3,3)
Rotation matrix with det(R) = 1, R.T R = I. Rotation matrix with det(R) = 1 and R.T R = I.
""" """
return Rotation.from_basis(R) return Rotation.from_basis(R)
@ -866,14 +866,14 @@ class Rotation:
def from_parallel(a: np.ndarray, def from_parallel(a: np.ndarray,
b: np.ndarray ) -> 'Rotation': b: np.ndarray ) -> 'Rotation':
""" """
Initialize from pairs of two orthogonal lattice basis vectors. Initialize from pairs of two orthogonal basis vectors.
Parameters Parameters
---------- ----------
a : numpy.ndarray, shape (...,2,3) a : numpy.ndarray, shape (...,2,3)
Two three-dimensional lattice vectors of first orthogonal basis. Two three-dimensional vectors of first orthogonal basis.
b : numpy.ndarray, shape (...,2,3) b : numpy.ndarray, shape (...,2,3)
Corresponding three-dimensional lattice vectors of second basis. Corresponding three-dimensional vectors of second basis.
""" """
a_ = np.array(a) a_ = np.array(a)
@ -896,7 +896,7 @@ class Rotation:
normalize: bool = False, normalize: bool = False,
P: Literal[1, -1] = -1) -> 'Rotation': P: Literal[1, -1] = -1) -> 'Rotation':
""" """
Initialize from RodriguesFrank vector (angle separated from axis). Initialize from RodriguesFrank vector (with angle separated from axis).
Parameters Parameters
---------- ----------