reduced memory footprint (substantially) by switching to 32bit precision
This commit is contained in:
parent
96669b0ebd
commit
d67be0e3f3
|
@ -51,7 +51,7 @@ parser.set_defaults(d = 1,
|
||||||
|
|
||||||
options.immutable = map(int,options.immutable)
|
options.immutable = map(int,options.immutable)
|
||||||
|
|
||||||
getInterfaceEnergy = lambda A,B: (A*B != 0)*(A != B)*1.0 # 1.0 if A & B are distinct & nonzero, 0.0 otherwise
|
getInterfaceEnergy = lambda A,B: np.float32((A*B != 0)*(A != B)*1.0) # 1.0 if A & B are distinct & nonzero, 0.0 otherwise
|
||||||
struc = ndimage.generate_binary_structure(3,1) # 3D von Neumann neighborhood
|
struc = ndimage.generate_binary_structure(3,1) # 3D von Neumann neighborhood
|
||||||
|
|
||||||
# --- loop over input files -----------------------------------------------------------------------
|
# --- loop over input files -----------------------------------------------------------------------
|
||||||
|
@ -99,14 +99,13 @@ for name in filenames:
|
||||||
X,Y,Z = np.mgrid[0:grid[0],0:grid[1],0:grid[2]]
|
X,Y,Z = np.mgrid[0:grid[0],0:grid[1],0:grid[2]]
|
||||||
|
|
||||||
# Calculates gaussian weights for simulating 3d diffusion
|
# Calculates gaussian weights for simulating 3d diffusion
|
||||||
gauss = np.exp(-(X*X + Y*Y + Z*Z)/(2.0*options.d*options.d)) \
|
gauss = np.exp(-(X*X + Y*Y + Z*Z)/(2.0*options.d*options.d),dtype=np.float32) \
|
||||||
/math.pow(2.0*np.pi*options.d*options.d,(3.0 - np.count_nonzero(info['grid'] == 1))/2.)
|
/np.power(2.0*np.pi*options.d*options.d,(3.0 - np.count_nonzero(info['grid'] == 1))/2.,dtype=np.float32)
|
||||||
|
|
||||||
gauss[:,:,:grid[2]/2:-1] = gauss[:,:,1:(grid[2]+1)/2] # trying to cope with uneven (odd) grid size
|
gauss[:,:,:grid[2]/2:-1] = gauss[:,:,1:(grid[2]+1)/2] # trying to cope with uneven (odd) grid size
|
||||||
gauss[:,:grid[1]/2:-1,:] = gauss[:,1:(grid[1]+1)/2,:]
|
gauss[:,:grid[1]/2:-1,:] = gauss[:,1:(grid[1]+1)/2,:]
|
||||||
gauss[:grid[0]/2:-1,:,:] = gauss[1:(grid[0]+1)/2,:,:]
|
gauss[:grid[0]/2:-1,:,:] = gauss[1:(grid[0]+1)/2,:,:]
|
||||||
gauss = np.fft.rfftn(gauss)
|
gauss = np.fft.rfftn(gauss).astype(np.complex64)
|
||||||
|
|
||||||
|
|
||||||
for smoothIter in range(options.N):
|
for smoothIter in range(options.N):
|
||||||
|
|
||||||
|
@ -118,7 +117,7 @@ for name in filenames:
|
||||||
index[1],
|
index[1],
|
||||||
index[2]]
|
index[2]]
|
||||||
|
|
||||||
interfaceEnergy = np.zeros(microstructure.shape)
|
interfaceEnergy = np.zeros(microstructure.shape,dtype=np.float32)
|
||||||
for i in (-1,0,1):
|
for i in (-1,0,1):
|
||||||
for j in (-1,0,1):
|
for j in (-1,0,1):
|
||||||
for k in (-1,0,1):
|
for k in (-1,0,1):
|
||||||
|
@ -141,11 +140,12 @@ for name in filenames:
|
||||||
periodic_bulkEnergy = periodic_interfaceEnergy[index[0],
|
periodic_bulkEnergy = periodic_interfaceEnergy[index[0],
|
||||||
index[1],
|
index[1],
|
||||||
index[2]].reshape(2*grid) # fill bulk with energy of nearest interface
|
index[2]].reshape(2*grid) # fill bulk with energy of nearest interface
|
||||||
|
|
||||||
if options.ndimage:
|
if options.ndimage:
|
||||||
periodic_diffusedEnergy = ndimage.gaussian_filter(
|
periodic_diffusedEnergy = ndimage.gaussian_filter(
|
||||||
np.where(ndimage.morphology.binary_dilation(periodic_interfaceEnergy > 0.,
|
np.where(ndimage.morphology.binary_dilation(periodic_interfaceEnergy > 0.,
|
||||||
structure = struc,
|
structure = struc,
|
||||||
iterations = int(round(options.d*2.)), # fat boundary
|
iterations = int(round(options.d*2.))-1, # fat boundary
|
||||||
),
|
),
|
||||||
periodic_bulkEnergy, # ...and zero everywhere else
|
periodic_bulkEnergy, # ...and zero everywhere else
|
||||||
0.),
|
0.),
|
||||||
|
@ -159,7 +159,8 @@ for name in filenames:
|
||||||
periodic_bulkEnergy[grid[0]/2:-grid[0]/2, # retain filled energy on fat boundary...
|
periodic_bulkEnergy[grid[0]/2:-grid[0]/2, # retain filled energy on fat boundary...
|
||||||
grid[1]/2:-grid[1]/2,
|
grid[1]/2:-grid[1]/2,
|
||||||
grid[2]/2:-grid[2]/2], # ...and zero everywhere else
|
grid[2]/2:-grid[2]/2], # ...and zero everywhere else
|
||||||
0.))*gauss)
|
0.)).astype(np.complex64) *
|
||||||
|
gauss).astype(np.float32)
|
||||||
|
|
||||||
periodic_diffusedEnergy = np.tile(diffusedEnergy,(3,3,3))[grid[0]/2:-grid[0]/2,
|
periodic_diffusedEnergy = np.tile(diffusedEnergy,(3,3,3))[grid[0]/2:-grid[0]/2,
|
||||||
grid[1]/2:-grid[1]/2,
|
grid[1]/2:-grid[1]/2,
|
||||||
|
@ -181,7 +182,7 @@ for name in filenames:
|
||||||
grid[1]/2:-grid[1]/2,
|
grid[1]/2:-grid[1]/2,
|
||||||
grid[2]/2:-grid[2]/2] # extent grains into interface region
|
grid[2]/2:-grid[2]/2] # extent grains into interface region
|
||||||
|
|
||||||
immutable = np.zeros(microstructure.shape, dtype=bool)
|
immutable = np.zeros(microstructure.shape, dtype=np.bool)
|
||||||
# find locations where immutable microstructures have been (or are now)
|
# find locations where immutable microstructures have been (or are now)
|
||||||
for micro in options.immutable:
|
for micro in options.immutable:
|
||||||
immutable += microstructure_original == micro
|
immutable += microstructure_original == micro
|
||||||
|
|
Loading…
Reference in New Issue