figuring out "instance" and "of" centrally

This commit is contained in:
Martin Diehl 2018-12-30 14:01:05 +01:00
parent 8f99f1ce61
commit b53cda6411
2 changed files with 26 additions and 31 deletions

View File

@ -538,6 +538,9 @@ subroutine constitutive_LiAndItsTangents(Li, dLi_dS, dLi_dFi, S6, Fi, ipc, ip, e
math_mul33x33, & math_mul33x33, &
math_Mandel6to33 math_Mandel6to33
use material, only: & use material, only: &
phasememberAt, &
phase_plasticity, &
phase_plasticityInstance, &
phase_plasticity, & phase_plasticity, &
material_phase, & material_phase, &
phase_kinematics, & phase_kinematics, &
@ -569,19 +572,18 @@ subroutine constitutive_LiAndItsTangents(Li, dLi_dS, dLi_dFi, S6, Fi, ipc, ip, e
real(pReal), intent(out), dimension(3,3,3,3) :: & real(pReal), intent(out), dimension(3,3,3,3) :: &
dLi_dS, & !< derivative of Li with respect to S dLi_dS, & !< derivative of Li with respect to S
dLi_dFi dLi_dFi
real(pReal), dimension(3,3) :: & real(pReal), dimension(3,3) :: &
my_Li !< intermediate velocity gradient my_Li, & !< intermediate velocity gradient
real(pReal), dimension(3,3,3,3) :: &
my_dLi_dS
real(pReal), dimension(3,3) :: &
FiInv, & FiInv, &
temp_33 temp_33
real(pReal), dimension(3,3,3,3) :: &
my_dLi_dS
real(pReal) :: & real(pReal) :: &
detFi detFi
integer(pInt) :: & integer(pInt) :: &
k !< counter in kinematics loop k, i, j, &
integer(pInt) :: & instance, of
i, j
Li = 0.0_pReal Li = 0.0_pReal
dLi_dS = 0.0_pReal dLi_dS = 0.0_pReal
@ -589,7 +591,9 @@ subroutine constitutive_LiAndItsTangents(Li, dLi_dS, dLi_dFi, S6, Fi, ipc, ip, e
plasticityType: select case (phase_plasticity(material_phase(ipc,ip,el))) plasticityType: select case (phase_plasticity(material_phase(ipc,ip,el)))
case (PLASTICITY_isotropic_ID) plasticityType case (PLASTICITY_isotropic_ID) plasticityType
call plastic_isotropic_LiAndItsTangent(my_Li, my_dLi_dS, math_Mandel6to33(S6), ipc, ip, el) of = phasememberAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
call plastic_isotropic_LiAndItsTangent(my_Li, my_dLi_dS, math_Mandel6to33(S6),instance,of)
case default plasticityType case default plasticityType
my_Li = 0.0_pReal my_Li = 0.0_pReal
my_dLi_dS = 0.0_pReal my_dLi_dS = 0.0_pReal

View File

@ -314,46 +314,37 @@ subroutine plastic_isotropic_LpAndItsTangent(Lp,dLp_dMp,Mp,ipc,ip,el)
end associate end associate
end subroutine plastic_isotropic_LpAndItsTangent end subroutine plastic_isotropic_LpAndItsTangent
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief calculates plastic velocity gradient and its tangent !> @brief calculates plastic velocity gradient and its tangent
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dTstar,Tstar,ipc,ip,el) subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dTstar,Tstar,instance,of)
use math, only: & use math, only: &
math_mul6x6, &
math_Mandel6to33, &
math_Plain3333to99, &
math_spherical33, & math_spherical33, &
math_mul33xx33 math_mul33xx33
use material, only: &
phasememberAt, &
material_phase, &
phase_plasticityInstance
implicit none implicit none
real(pReal), dimension(3,3), intent(out) :: & real(pReal), dimension(3,3), intent(out) :: &
Li !< plastic velocity gradient Li !< inleastic velocity gradient
real(pReal), dimension(3,3,3,3), intent(out) :: & real(pReal), dimension(3,3,3,3), intent(out) :: &
dLi_dTstar !< derivative of Li with respect to Tstar as 4th order tensor dLi_dTstar !< derivative of Li with respect to the Mandel stress
real(pReal), dimension(3,3), intent(in) :: & real(pReal), dimension(3,3), intent(in) :: &
Tstar !< 2nd Piola Kirchhoff stress tensor in Mandel notation Tstar !< Mandel stress
integer(pInt), intent(in) :: & integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point instance, &
ip, & !< integration point of
el !< element
real(pReal), dimension(3,3) :: & real(pReal), dimension(3,3) :: &
Tstar_sph !< sphiatoric part of the 2nd Piola Kirchhoff stress tensor as 2nd order tensor Tstar_sph !< sphiatoric part of the Mandel stress
real(pReal) :: & real(pReal) :: &
gamma_dot, & !< strainrate gamma_dot, & !< strainrate
norm_Tstar_sph, & !< euclidean norm of Tstar_sph norm_Tstar_sph, & !< euclidean norm of Tstar_sph
squarenorm_Tstar_sph !< square of the euclidean norm of Tstar_sph squarenorm_Tstar_sph !< square of the euclidean norm of Tstar_sph
integer(pInt) :: & integer(pInt) :: &
instance, of, &
k, l, m, n k, l, m, n
of = phasememberAt(ipc,ip,el) ! phasememberAt should be tackled by material and be renamed to material_phasemember associate(prm => param(instance), stt => state(instance))
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
associate(prm => param(instance))
Tstar_sph = math_spherical33(Tstar) Tstar_sph = math_spherical33(Tstar)
squarenorm_Tstar_sph = math_mul33xx33(Tstar_sph,Tstar_sph) squarenorm_Tstar_sph = math_mul33xx33(Tstar_sph,Tstar_sph)
@ -361,8 +352,7 @@ subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dTstar,Tstar,ipc,ip,el)
if (prm%dilatation .and. norm_Tstar_sph > 0.0_pReal) then ! Tstar == 0 or J2 plascitiy --> both Li and dLi_dTstar are zero if (prm%dilatation .and. norm_Tstar_sph > 0.0_pReal) then ! Tstar == 0 or J2 plascitiy --> both Li and dLi_dTstar are zero
gamma_dot = prm%gdot0 & gamma_dot = prm%gdot0 &
* (sqrt(1.5_pReal) * norm_Tstar_sph / prm%fTaylor / state(instance)%flowstress(of) ) & * (sqrt(1.5_pReal) * norm_Tstar_sph / prm%fTaylor / stt%flowstress(of) ) **prm%n
**prm%n
Li = Tstar_sph/norm_Tstar_sph * gamma_dot/prm%fTaylor Li = Tstar_sph/norm_Tstar_sph * gamma_dot/prm%fTaylor
@ -380,6 +370,7 @@ subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dTstar,Tstar,ipc,ip,el)
endif endif
end associate end associate
end subroutine plastic_isotropic_LiAndItsTangent end subroutine plastic_isotropic_LiAndItsTangent