parent
f96f9332cf
commit
b03f229613
|
@ -23,7 +23,7 @@
|
||||||
\setbeamertemplate{blocks}[rounded][shadow=true]
|
\setbeamertemplate{blocks}[rounded][shadow=true]
|
||||||
|
|
||||||
\title{Dislocation structure and kinetics in slip-twin model}
|
\title{Dislocation structure and kinetics in slip-twin model}
|
||||||
\date{MSU Twin Meeting, Duesseldorf -- October 6$^{\textsf{th}}$, 2009}
|
\date{MSU Twin Meeting, D\"usseldorf -- October 6\textsuperscript{th}, 2009}
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
|
|
||||||
|
@ -98,6 +98,13 @@
|
||||||
\slip{\dot\varrho_{\text{multiplication}}} = \dfrac{|\slip{\dot\gamma}|}{\slip b\,\slip\lambda} \nonumber
|
\slip{\dot\varrho_{\text{multiplication}}} = \dfrac{|\slip{\dot\gamma}|}{\slip b\,\slip\lambda} \nonumber
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\end{block}
|
\end{block}
|
||||||
|
|
||||||
|
\begin{block}{Multiplication constant:}
|
||||||
|
\begin{equation}
|
||||||
|
\slip\lambda = k_{\lambda} \left(\slip\varrho\right)^{-1/2}
|
||||||
|
\nonumber
|
||||||
|
\end{equation}
|
||||||
|
\end{block}
|
||||||
}
|
}
|
||||||
|
|
||||||
\frame {
|
\frame {
|
||||||
|
@ -105,11 +112,11 @@
|
||||||
|
|
||||||
\begin{block}{Dipole formation:}
|
\begin{block}{Dipole formation:}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\slip{\dot\varrho_{\text{formation}}} = 2\,\dfrac{2\,\slip{\hat d}}{\slip b}\,\dfrac{\slip\varrho_{\text{edge}}}{2}\,|\slip{\dot\gamma}| \nonumber
|
\slip{\dot\varrho_{\text{formation}}} = 2\,\dfrac{2\,\operatorname{max}(\slip{\hat d},\slip{\check d})}{\slip b}\,\dfrac{\slip\varrho_{\text{edge}}}{2}\,|\slip{\dot\gamma}| \nonumber
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\end{block}
|
\end{block}
|
||||||
|
|
||||||
\begin{block}{Length $\slip{\hat d}$:}
|
\begin{block}{Upper stability limit for dipoles $\slip{\hat d}$:}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\slip{\hat d} = \dfrac{1}{8\,\pi}\,\dfrac{G_{\text{iso}}\,\slip b}{1-\nu}\,\dfrac{1}{|\slip\tau|} \nonumber
|
\slip{\hat d} = \dfrac{1}{8\,\pi}\,\dfrac{G_{\text{iso}}\,\slip b}{1-\nu}\,\dfrac{1}{|\slip\tau|} \nonumber
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
@ -119,13 +126,13 @@
|
||||||
\frame {
|
\frame {
|
||||||
\frametitle{Spontaneous annihilation of 2 single dislocations}
|
\frametitle{Spontaneous annihilation of 2 single dislocations}
|
||||||
|
|
||||||
\begin{block}{Single-single annihilation:}
|
\begin{block}{Single--single annihilation:}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\slip{\dot\varrho_{\text{single-single}}} = 2\,\dfrac{2\,\slip{\check d}}{\slip b}\,\dfrac{\slip\varrho_{\text{edge}}}{2}\,|\slip{\dot\gamma}| \nonumber
|
\slip{\dot\varrho_{\text{single--single}}} = 2\,\dfrac{2\,\slip{\check d}}{\slip b}\,\dfrac{\slip\varrho_{\text{edge}}}{2}\,|\slip{\dot\gamma}| \nonumber
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\end{block}
|
\end{block}
|
||||||
|
|
||||||
\begin{block}{Length $\slip{\check d}$:}
|
\begin{block}{Lower stability limit of dipoles $\slip{\check d}$:}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\slip{\check d} \propto \slip b \nonumber
|
\slip{\check d} \propto \slip b \nonumber
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
@ -133,11 +140,11 @@
|
||||||
}
|
}
|
||||||
|
|
||||||
\frame {
|
\frame {
|
||||||
\frametitle{Spontaneous annihilation of one single dislocation and one dipole constituent}
|
\frametitle{Spontaneous annihilation of one single dislocation with a dipole constituent}
|
||||||
|
|
||||||
\begin{block}{Single-dipole constituent annihilation:}
|
\begin{block}{Single--dipole constituent annihilation:}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\slip{\dot\varrho_{\text{single-dipole}}} = 2\,\dfrac{2\,\slip{\check d}}{\slip b}\,\dfrac{\slip\varrho_{\text{dipole}}}{2}\,|\slip{\dot\gamma}| \nonumber
|
\slip{\dot\varrho_{\text{single--dipole}}} = 2\,\dfrac{2\,\slip{\check d}}{\slip b}\,\dfrac{\slip\varrho_{\text{dipole}}}{2}\,|\slip{\dot\gamma}| \nonumber
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\end{block}
|
\end{block}
|
||||||
}
|
}
|
||||||
|
@ -147,13 +154,13 @@
|
||||||
|
|
||||||
\begin{block}{Dipole climb:}
|
\begin{block}{Dipole climb:}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\slip{\dot\varrho_{\text{climb}}} = \slip\varrho_{\text{dipole}}\,\dfrac{4\,v_{\text{climb}}}{\slip{\hat d}+\slip{\check d}} \nonumber
|
\slip{\dot\varrho_{\text{climb}}} = \slip\varrho_{\text{dipole}}\,\dfrac{2\,v_{\text{climb}}}{(\slip{\hat d}-\slip{\check d})/2} \nonumber
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\end{block}
|
\end{block}
|
||||||
|
|
||||||
\begin{block}{Climb velocity $\slip v_{\text{climb}}$:}
|
\begin{block}{Climb velocity $\slip v_{\text{climb}}$:}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\slip v_{\text{climb}} = \dfrac{D\,\slip\Omega}{\slip b\,k_{\text{B}}\,T}\,\dfrac{G_{\text{iso}}\,\slip b}{2\,\pi\,(1-\nu)}\,\dfrac{2}{\slip{\hat d}+\slip{\check d}} \nonumber
|
\slip v_{\text{climb}} = \dfrac{D\,\slip\Omega}{\slip b\,k_{\text{B}}\,T}\,\dfrac{G_{\text{iso}}\,\slip b}{2\,\pi\,(1-\nu)}\,\dfrac{1}{(\slip{\hat d}+\slip{\check d})/2} \nonumber
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\end{block}
|
\end{block}
|
||||||
}
|
}
|
||||||
|
@ -163,13 +170,13 @@
|
||||||
|
|
||||||
\begin{block}{Edge dislocation density rate:}
|
\begin{block}{Edge dislocation density rate:}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\slip{\dot\varrho_{\text{edge}}} = \slip{\dot\varrho_{\text{multiplication}}} - \slip{\dot\varrho_{\text{formation}}} - \slip{\dot\varrho_{\text{single-single}}} \nonumber
|
\slip{\dot\varrho_{\text{edge}}} = \slip{\dot\varrho_{\text{multiplication}}} - \slip{\dot\varrho_{\text{formation}}} - \slip{\dot\varrho_{\text{single--single}}} \nonumber
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\end{block}
|
\end{block}
|
||||||
|
|
||||||
\begin{block}{Dislocation dipole density rate:}
|
\begin{block}{Dislocation dipole density rate:}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\slip{\dot\varrho_{\text{dipole}}} = \slip{\dot\varrho_{\text{formation}}} - \slip{\dot\varrho_{\text{single-dipole}}} - \slip{\dot\varrho_{\text{climb}}} \nonumber
|
\slip{\dot\varrho_{\text{dipole}}} = \slip{\dot\varrho_{\text{formation}}} - \slip{\dot\varrho_{\text{single--dipole}}} - \slip{\dot\varrho_{\text{climb}}} \nonumber
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\end{block}
|
\end{block}
|
||||||
}
|
}
|
||||||
|
|
Binary file not shown.
Loading…
Reference in New Issue