diff --git a/documentation/ConstitutiveLaw/DisloTwinLaw/Tex Files/[06_10_2009]_MSU_TwinMeeting.tex b/documentation/ConstitutiveLaw/DisloTwinLaw/Tex Files/[06_10_2009]_MSU_TwinMeeting.tex index 2a53772a4..31e0a238b 100644 --- a/documentation/ConstitutiveLaw/DisloTwinLaw/Tex Files/[06_10_2009]_MSU_TwinMeeting.tex +++ b/documentation/ConstitutiveLaw/DisloTwinLaw/Tex Files/[06_10_2009]_MSU_TwinMeeting.tex @@ -1,177 +1,184 @@ -\documentclass{beamer} - -\usepackage{amsmath,amssymb,amsfonts} -\usepackage{bm} -\usepackage{array} -%\include{Shortcuts} -\newcommand{\ie}{\textit{i.e.}} -\newcommand{\eg}{\textit{e.g.}} -\newcommand{\vect}[1]{\ensuremath{\mathbf{#1}}} -\newcommand{\tensII}[1]{\ensuremath{\mathbf{#1}}} -\newcommand{\tensIV}[1]{\ensuremath{\mathbb{#1}}} -\newcommand{\slip}[1]{\ensuremath{#1^{\alpha}}} -\newcommand{\slipslip}[1]{\ensuremath{#1^{\alpha\alpha}}} -\newcommand{\slipt}[1]{\ensuremath{#1^{\tilde\alpha}}} -\newcommand{\slipslipt}[1]{\ensuremath{#1^{\alpha\tilde\alpha}}} -\newcommand{\twin}[1]{\ensuremath{#1^{\beta}}} -\newcommand{\twint}[1]{\ensuremath{#1^{\tilde\beta}}} -\newcommand{\twintwint}[1]{\ensuremath{#1^{\beta\tilde\beta}}} -\newcommand{\sliptwin}[1]{\ensuremath{#1^{\alpha\beta}}} -\newcommand{\twinslip}[1]{\ensuremath{#1^{\beta\alpha}}} - -\usetheme{mpie} -\setbeamertemplate{blocks}[rounded][shadow=true] - -\title{Dislocation structure and kinetics in slip-twin model} -\date{MSU Twin Meeting, Duesseldorf -- October 6$^{\textsf{th}}$, 2009} - -\begin{document} - -\frame{\titlepage} - -\frame { - \frametitle{Dislocation structure parametrization} - - \begin{block}{Internal variables:} - \begin{itemize} - \item<1-> $\slip N$ edge dislocation densities $\slip\varrho_{\text{edge}}$ - \item<1-> $\slip N$ dipole densities $\slip\varrho_{\text{dipole}}$ - \end{itemize} - \end{block} - - \begin{block}{Derived measures:} - \begin{itemize} - \item<1-> $\slip\tau_{\mathrm{c}}$ threshold shear stress - \item<1-> $\slip\lambda$ mean distance between 2 obstacles seen by a dislocation - \end{itemize} - \end{block} -} - -\frame { - \frametitle{Dislocation structure parametrization} - - \begin{block}{Threshold stress $\slip\tau$:} - \begin{equation} - \slip\tau_{\text{c}} = G_{\text{iso}}\,\slip b\,\sqrt{\sum_{\tilde\alpha\,=\,1}^{\slip N}\,\slipslipt\xi\,(\slipt\varrho_{\text{edge}} + \slipt\varrho_{\text{dipole}})} \nonumber - \end{equation} - \end{block} - - \begin{block}{with:} - \begin{itemize} - \item<1-> $G_{\text{iso}}$ Isotropic shear modulus - \item<1-> $\slip b$ Burgers vector of slip system $\alpha$ - \item<1-> $\slipslipt\xi$ interaction strength (Kubin et al. 2008) - \end{itemize} - \end{block} -} - -\frame { - \frametitle{Orowan's kinetics} - - \begin{block}{Shear rate $\slip{\dot\gamma}$:} - \begin{equation} - \slip{\dot\gamma} = \slip\varrho_{\text{edge}}\,\slip b\,\slip v_{\text{glide}} \nonumber - \end{equation} - \end{block} - - \begin{block}{Velocity $\slip v_{\text{glide}}$:} - \begin{equation} - \slip v_{\text{glide}} = v_0\, - \exp{\left[-\dfrac{Q}{k_{\text{B}}\,T}\,\left(1-\left(\dfrac{|\slip\tau|}{\slip\tau_{\text{c}}}\right)^p\right)^q\right]} \operatorname{sign}(\slip\tau) \nonumber - \end{equation} - \end{block} - - \begin{block}{with:} - \begin{itemize} - \item<1-> $v_0$ Velocity pre-factor - \item<1-> $Q$ Activation energy for dislocation glide - \item<1-> $k_{\text{B}}\,T$ Boltzmann energy - \end{itemize} - \end{block} -} - -\frame { - \frametitle{Dislocation multiplication} - - \begin{block}{Multiplication:} - \begin{equation} - \slip{\dot\varrho_{\text{multiplication}}} = \dfrac{|\slip{\dot\gamma}|}{\slip b\,\slip\lambda} \nonumber - \end{equation} - \end{block} -} - -\frame { - \frametitle{Dislocation dipole formation} - - \begin{block}{Dipole formation:} - \begin{equation} - \slip{\dot\varrho_{\text{formation}}} = 2\,\dfrac{2\,\slip{\hat d}}{\slip b}\,\dfrac{\slip\varrho_{\text{edge}}}{2}\,|\slip{\dot\gamma}| \nonumber - \end{equation} - \end{block} - - \begin{block}{Length $\slip{\hat d}$:} - \begin{equation} - \slip{\hat d} = \dfrac{1}{8\,\pi}\,\dfrac{G_{\text{iso}}\,\slip b}{1-\nu}\,\dfrac{1}{|\slip\tau|} \nonumber - \end{equation} - \end{block} -} - -\frame { - \frametitle{Spontaneous annihilation of 2 single dislocations} - - \begin{block}{Single-single annihilation:} - \begin{equation} - \slip{\dot\varrho_{\text{single-single}}} = 2\,\dfrac{2\,\slip{\check d}}{\slip b}\,\dfrac{\slip\varrho_{\text{edge}}}{2}\,|\slip{\dot\gamma}| \nonumber - \end{equation} - \end{block} - - \begin{block}{Length $\slip{\check d}$:} - \begin{equation} - \slip{\check d} \propto \slip b \nonumber - \end{equation} - \end{block} -} - -\frame { - \frametitle{Spontaneous annihilation of one single dislocation and one dipole constituent} - - \begin{block}{Single-dipole constituent annihilation:} - \begin{equation} - \slip{\dot\varrho_{\text{single-dipole}}} = 2\,\dfrac{2\,\slip{\check d}}{\slip b}\,\dfrac{\slip\varrho_{\text{dipole}}}{2}\,|\slip{\dot\gamma}| \nonumber - \end{equation} - \end{block} -} - -\frame { - \frametitle{Dislocation dipole climb} - - \begin{block}{Dipole climb:} - \begin{equation} - \slip{\dot\varrho_{\text{climb}}} = \slip\varrho_{\text{dipole}}\,\dfrac{4\,v_{\text{climb}}}{\slip{\hat d}+\slip{\check d}} \nonumber - \end{equation} - \end{block} - - \begin{block}{Climb velocity $\slip v_{\text{climb}}$:} - \begin{equation} - \slip v_{\text{climb}} = \dfrac{D\,\slip\Omega}{\slip b\,k_{\text{B}}\,T}\,\dfrac{G_{\text{iso}}\,\slip b}{2\,\pi\,(1-\nu)}\,\dfrac{2}{\slip{\hat d}+\slip{\check d}} \nonumber - \end{equation} - \end{block} -} - -\frame { - \frametitle{Evolution of dislocation densities} - - \begin{block}{Edge dislocation density rate:} - \begin{equation} - \slip{\dot\varrho_{\text{edge}}} = \slip{\dot\varrho_{\text{multiplication}}} - \slip{\dot\varrho_{\text{formation}}} - \slip{\dot\varrho_{\text{single-single}}} \nonumber - \end{equation} - \end{block} - -\begin{block}{Dislocation dipole density rate:} - \begin{equation} - \slip{\dot\varrho_{\text{dipole}}} = \slip{\dot\varrho_{\text{formation}}} - \slip{\dot\varrho_{\text{single-dipole}}} - \slip{\dot\varrho_{\text{climb}}} \nonumber - \end{equation} - \end{block} -} - +\documentclass{beamer} + +\usepackage{amsmath,amssymb,amsfonts} +\usepackage{bm} +\usepackage{array} +%\include{Shortcuts} +\newcommand{\ie}{\textit{i.e.}} +\newcommand{\eg}{\textit{e.g.}} +\newcommand{\vect}[1]{\ensuremath{\mathbf{#1}}} +\newcommand{\tensII}[1]{\ensuremath{\mathbf{#1}}} +\newcommand{\tensIV}[1]{\ensuremath{\mathbb{#1}}} +\newcommand{\slip}[1]{\ensuremath{#1^{\alpha}}} +\newcommand{\slipslip}[1]{\ensuremath{#1^{\alpha\alpha}}} +\newcommand{\slipt}[1]{\ensuremath{#1^{\tilde\alpha}}} +\newcommand{\slipslipt}[1]{\ensuremath{#1^{\alpha\tilde\alpha}}} +\newcommand{\twin}[1]{\ensuremath{#1^{\beta}}} +\newcommand{\twint}[1]{\ensuremath{#1^{\tilde\beta}}} +\newcommand{\twintwint}[1]{\ensuremath{#1^{\beta\tilde\beta}}} +\newcommand{\sliptwin}[1]{\ensuremath{#1^{\alpha\beta}}} +\newcommand{\twinslip}[1]{\ensuremath{#1^{\beta\alpha}}} + +\usetheme{mpie} +\setbeamertemplate{blocks}[rounded][shadow=true] + +\title{Dislocation structure and kinetics in slip-twin model} +\date{MSU Twin Meeting, D\"usseldorf -- October 6\textsuperscript{th}, 2009} + +\begin{document} + +\frame{\titlepage} + +\frame { + \frametitle{Dislocation structure parametrization} + + \begin{block}{Internal variables:} + \begin{itemize} + \item<1-> $\slip N$ edge dislocation densities $\slip\varrho_{\text{edge}}$ + \item<1-> $\slip N$ dipole densities $\slip\varrho_{\text{dipole}}$ + \end{itemize} + \end{block} + + \begin{block}{Derived measures:} + \begin{itemize} + \item<1-> $\slip\tau_{\mathrm{c}}$ threshold shear stress + \item<1-> $\slip\lambda$ mean distance between 2 obstacles seen by a dislocation + \end{itemize} + \end{block} +} + +\frame { + \frametitle{Dislocation structure parametrization} + + \begin{block}{Threshold stress $\slip\tau$:} + \begin{equation} + \slip\tau_{\text{c}} = G_{\text{iso}}\,\slip b\,\sqrt{\sum_{\tilde\alpha\,=\,1}^{\slip N}\,\slipslipt\xi\,(\slipt\varrho_{\text{edge}} + \slipt\varrho_{\text{dipole}})} \nonumber + \end{equation} + \end{block} + + \begin{block}{with:} + \begin{itemize} + \item<1-> $G_{\text{iso}}$ Isotropic shear modulus + \item<1-> $\slip b$ Burgers vector of slip system $\alpha$ + \item<1-> $\slipslipt\xi$ interaction strength (Kubin et al. 2008) + \end{itemize} + \end{block} +} + +\frame { + \frametitle{Orowan's kinetics} + + \begin{block}{Shear rate $\slip{\dot\gamma}$:} + \begin{equation} + \slip{\dot\gamma} = \slip\varrho_{\text{edge}}\,\slip b\,\slip v_{\text{glide}} \nonumber + \end{equation} + \end{block} + + \begin{block}{Velocity $\slip v_{\text{glide}}$:} + \begin{equation} + \slip v_{\text{glide}} = v_0\, + \exp{\left[-\dfrac{Q}{k_{\text{B}}\,T}\,\left(1-\left(\dfrac{|\slip\tau|}{\slip\tau_{\text{c}}}\right)^p\right)^q\right]} \operatorname{sign}(\slip\tau) \nonumber + \end{equation} + \end{block} + + \begin{block}{with:} + \begin{itemize} + \item<1-> $v_0$ Velocity pre-factor + \item<1-> $Q$ Activation energy for dislocation glide + \item<1-> $k_{\text{B}}\,T$ Boltzmann energy + \end{itemize} + \end{block} +} + +\frame { + \frametitle{Dislocation multiplication} + + \begin{block}{Multiplication:} + \begin{equation} + \slip{\dot\varrho_{\text{multiplication}}} = \dfrac{|\slip{\dot\gamma}|}{\slip b\,\slip\lambda} \nonumber + \end{equation} + \end{block} + + \begin{block}{Multiplication constant:} + \begin{equation} + \slip\lambda = k_{\lambda} \left(\slip\varrho\right)^{-1/2} +\nonumber + \end{equation} + \end{block} +} + +\frame { + \frametitle{Dislocation dipole formation} + + \begin{block}{Dipole formation:} + \begin{equation} + \slip{\dot\varrho_{\text{formation}}} = 2\,\dfrac{2\,\operatorname{max}(\slip{\hat d},\slip{\check d})}{\slip b}\,\dfrac{\slip\varrho_{\text{edge}}}{2}\,|\slip{\dot\gamma}| \nonumber + \end{equation} + \end{block} + + \begin{block}{Upper stability limit for dipoles $\slip{\hat d}$:} + \begin{equation} + \slip{\hat d} = \dfrac{1}{8\,\pi}\,\dfrac{G_{\text{iso}}\,\slip b}{1-\nu}\,\dfrac{1}{|\slip\tau|} \nonumber + \end{equation} + \end{block} +} + +\frame { + \frametitle{Spontaneous annihilation of 2 single dislocations} + + \begin{block}{Single--single annihilation:} + \begin{equation} + \slip{\dot\varrho_{\text{single--single}}} = 2\,\dfrac{2\,\slip{\check d}}{\slip b}\,\dfrac{\slip\varrho_{\text{edge}}}{2}\,|\slip{\dot\gamma}| \nonumber + \end{equation} + \end{block} + + \begin{block}{Lower stability limit of dipoles $\slip{\check d}$:} + \begin{equation} + \slip{\check d} \propto \slip b \nonumber + \end{equation} + \end{block} +} + +\frame { + \frametitle{Spontaneous annihilation of one single dislocation with a dipole constituent} + + \begin{block}{Single--dipole constituent annihilation:} + \begin{equation} + \slip{\dot\varrho_{\text{single--dipole}}} = 2\,\dfrac{2\,\slip{\check d}}{\slip b}\,\dfrac{\slip\varrho_{\text{dipole}}}{2}\,|\slip{\dot\gamma}| \nonumber + \end{equation} + \end{block} +} + +\frame { + \frametitle{Dislocation dipole climb} + + \begin{block}{Dipole climb:} + \begin{equation} + \slip{\dot\varrho_{\text{climb}}} = \slip\varrho_{\text{dipole}}\,\dfrac{2\,v_{\text{climb}}}{(\slip{\hat d}-\slip{\check d})/2} \nonumber + \end{equation} + \end{block} + + \begin{block}{Climb velocity $\slip v_{\text{climb}}$:} + \begin{equation} + \slip v_{\text{climb}} = \dfrac{D\,\slip\Omega}{\slip b\,k_{\text{B}}\,T}\,\dfrac{G_{\text{iso}}\,\slip b}{2\,\pi\,(1-\nu)}\,\dfrac{1}{(\slip{\hat d}+\slip{\check d})/2} \nonumber + \end{equation} + \end{block} +} + +\frame { + \frametitle{Evolution of dislocation densities} + + \begin{block}{Edge dislocation density rate:} + \begin{equation} + \slip{\dot\varrho_{\text{edge}}} = \slip{\dot\varrho_{\text{multiplication}}} - \slip{\dot\varrho_{\text{formation}}} - \slip{\dot\varrho_{\text{single--single}}} \nonumber + \end{equation} + \end{block} + +\begin{block}{Dislocation dipole density rate:} + \begin{equation} + \slip{\dot\varrho_{\text{dipole}}} = \slip{\dot\varrho_{\text{formation}}} - \slip{\dot\varrho_{\text{single--dipole}}} - \slip{\dot\varrho_{\text{climb}}} \nonumber + \end{equation} + \end{block} +} + \end{document} \ No newline at end of file diff --git a/documentation/ConstitutiveLaw/DisloTwinLaw/[06_10_2009]_MSU_TwinMeeting.pdf b/documentation/ConstitutiveLaw/DisloTwinLaw/[06_10_2009]_MSU_TwinMeeting.pdf index d422fef3b..879d5c26e 100644 Binary files a/documentation/ConstitutiveLaw/DisloTwinLaw/[06_10_2009]_MSU_TwinMeeting.pdf and b/documentation/ConstitutiveLaw/DisloTwinLaw/[06_10_2009]_MSU_TwinMeeting.pdf differ