first draft of a script to compute yield surfaces with the spectral solver
This commit is contained in:
parent
ad452508b0
commit
a68fe7c77b
|
@ -0,0 +1,165 @@
|
|||
#!/usr/bin/python
|
||||
# -*- coding: UTF-8 no BOM -*-
|
||||
|
||||
import numpy as np
|
||||
from scipy.optimize import curve_fit
|
||||
from scipy.linalg import svd
|
||||
import threading
|
||||
import time
|
||||
|
||||
def asFullTensor(voigt):
|
||||
return np.array([[voigt[0],voigt[3],voigt[5]],\
|
||||
[voigt[3],voigt[1],voigt[4]],\
|
||||
[voigt[5],voigt[4],voigt[2]]])
|
||||
|
||||
def Hill48(x, F,G,H,L,M,N):
|
||||
return F*(x[1]-x[2])**2 + G*(x[2]-x[0])**2 + H*(x[0]-x[1])** + \
|
||||
2*L*x[4]**2 + 2*M*x[5]**2 + 2*N*x[3]**2 -1.
|
||||
|
||||
def vonMises(x, S_y):
|
||||
p = svd(asFullTensor(x))
|
||||
return (s[2]-s[1])**2+(s[1]-s[0])**2+(s[0]-s[2])**2-2*S_y**2
|
||||
|
||||
#---------------------------------------------------------------------------------------------------
|
||||
class Loadcase():
|
||||
#---------------------------------------------------------------------------------------------------
|
||||
'''
|
||||
Class for generating load cases for the spectral solver
|
||||
'''
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def __init__(self):
|
||||
print('using the random load case generator')
|
||||
|
||||
def getNext(self,N=0):
|
||||
defgrad=['*']*9
|
||||
stress =[0]*9
|
||||
values=(np.random.random_sample(9)-.5)*scale*2
|
||||
|
||||
main=np.array([0,4,8])
|
||||
np.random.shuffle(main)
|
||||
for i in main[:2]:
|
||||
defgrad[i]=1.+values[i]
|
||||
stress[i]='*'
|
||||
for off in [[1,3,0],[2,6,0],[5,7,0]]:
|
||||
off=np.array(off)
|
||||
np.random.shuffle(off)
|
||||
print off
|
||||
if off[0] != 0:
|
||||
defgrad[off[0]]=values[off[0]]
|
||||
stress[off[0]]='*'
|
||||
return 'f '+' '.join(str(c) for c in defgrad)+\
|
||||
' p '+' '.join(str(c) for c in stress)+\
|
||||
' incs %s'%incs+\
|
||||
' time %s'%duration
|
||||
|
||||
#---------------------------------------------------------------------------------------------------
|
||||
class Criterion(object):
|
||||
#---------------------------------------------------------------------------------------------------
|
||||
'''
|
||||
Fitting to certain criterion
|
||||
'''
|
||||
def __init__(self,name):
|
||||
self.name = name.lower()
|
||||
if self.name not in ['hill48','vonmises']: print('Mist')
|
||||
print('using the %s criterion'%self.name)
|
||||
self.popt = 0.0
|
||||
|
||||
def fit(self,stress):
|
||||
print len(stress)
|
||||
if self.name == 'hill48':
|
||||
try:
|
||||
self.popt, pcov = curve_fit(Hill48, stress, np.zeros(np.shape(stress)[0]))
|
||||
print self.popt
|
||||
except:
|
||||
pass
|
||||
elif self.name == 'vonmises':
|
||||
try:
|
||||
self.popt, pcov = curve_fit(vonMises, stress.transpose(), np.shape(stress)[0])
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
#---------------------------------------------------------------------------------------------------
|
||||
|
||||
#---------------------------------------------------------------------------------------------------
|
||||
'''
|
||||
Runner class
|
||||
'''
|
||||
class myThread (threading.Thread):
|
||||
def __init__(self, threadID):
|
||||
threading.Thread.__init__(self)
|
||||
self.threadID = threadID
|
||||
def run(self):
|
||||
s.acquire()
|
||||
conv=converged()
|
||||
s.release()
|
||||
while not conv:
|
||||
doSim(4.,self.name)
|
||||
s.acquire()
|
||||
conv=converged()
|
||||
s.release()
|
||||
|
||||
def doSim(delay,thread):
|
||||
s.acquire()
|
||||
me=getLoadcase()+1
|
||||
print('starting sim %i from thread %s'%(me,thread))
|
||||
f=open('%s.load'%me,'w')
|
||||
f.write(myLoad.getNext(me))
|
||||
f.close()
|
||||
#dummy
|
||||
voigt = np.random.random_sample(6)*90e6
|
||||
global stressAll
|
||||
stressAll=np.append(stressAll,asFullTensor(voigt).reshape(1,9))
|
||||
stressAll=stressAll.reshape(len(stressAll)//9,9)
|
||||
myFit.fit(stressAll)
|
||||
s.release()
|
||||
time.sleep(delay)
|
||||
s.acquire()
|
||||
print('doing postprocessing sim %i from thread %s'%(me,thread))
|
||||
s.release()
|
||||
|
||||
def getLoadcase():
|
||||
global N_simulations
|
||||
N_simulations+=1
|
||||
return N_simulations
|
||||
|
||||
def converged():
|
||||
global N_simulations
|
||||
global maxN_simulations
|
||||
if N_simulations < maxN_simulations:
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
|
||||
# main
|
||||
|
||||
minN_simulations=20
|
||||
maxN_simulations=10
|
||||
N_simulations=0
|
||||
s=threading.Semaphore(1)
|
||||
scale = 0.02
|
||||
incs = 10
|
||||
duration = 10
|
||||
stressAll=np.zeros(0,'d')
|
||||
|
||||
myLoad = Loadcase()
|
||||
myFit = Criterion('Hill48')
|
||||
|
||||
N_threads=3
|
||||
t=[]
|
||||
|
||||
for i in range(N_threads):
|
||||
t.append(myThread(i))
|
||||
t[i].start()
|
||||
|
||||
for i in range(N_threads):
|
||||
t[i].join()
|
||||
|
||||
a, b = curve_fit(Hill48, stressAll.transpose(), np.zeros(10))
|
||||
print a
|
||||
print "Exiting Main Thread"
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue