first draft of a script to compute yield surfaces with the spectral solver

This commit is contained in:
Martin Diehl 2014-07-02 10:42:51 +00:00
parent ad452508b0
commit a68fe7c77b
1 changed files with 165 additions and 0 deletions

165
processing/misc/yieldSurface.py Executable file
View File

@ -0,0 +1,165 @@
#!/usr/bin/python
# -*- coding: UTF-8 no BOM -*-
import numpy as np
from scipy.optimize import curve_fit
from scipy.linalg import svd
import threading
import time
def asFullTensor(voigt):
return np.array([[voigt[0],voigt[3],voigt[5]],\
[voigt[3],voigt[1],voigt[4]],\
[voigt[5],voigt[4],voigt[2]]])
def Hill48(x, F,G,H,L,M,N):
return F*(x[1]-x[2])**2 + G*(x[2]-x[0])**2 + H*(x[0]-x[1])** + \
2*L*x[4]**2 + 2*M*x[5]**2 + 2*N*x[3]**2 -1.
def vonMises(x, S_y):
p = svd(asFullTensor(x))
return (s[2]-s[1])**2+(s[1]-s[0])**2+(s[0]-s[2])**2-2*S_y**2
#---------------------------------------------------------------------------------------------------
class Loadcase():
#---------------------------------------------------------------------------------------------------
'''
Class for generating load cases for the spectral solver
'''
# ------------------------------------------------------------------
def __init__(self):
print('using the random load case generator')
def getNext(self,N=0):
defgrad=['*']*9
stress =[0]*9
values=(np.random.random_sample(9)-.5)*scale*2
main=np.array([0,4,8])
np.random.shuffle(main)
for i in main[:2]:
defgrad[i]=1.+values[i]
stress[i]='*'
for off in [[1,3,0],[2,6,0],[5,7,0]]:
off=np.array(off)
np.random.shuffle(off)
print off
if off[0] != 0:
defgrad[off[0]]=values[off[0]]
stress[off[0]]='*'
return 'f '+' '.join(str(c) for c in defgrad)+\
' p '+' '.join(str(c) for c in stress)+\
' incs %s'%incs+\
' time %s'%duration
#---------------------------------------------------------------------------------------------------
class Criterion(object):
#---------------------------------------------------------------------------------------------------
'''
Fitting to certain criterion
'''
def __init__(self,name):
self.name = name.lower()
if self.name not in ['hill48','vonmises']: print('Mist')
print('using the %s criterion'%self.name)
self.popt = 0.0
def fit(self,stress):
print len(stress)
if self.name == 'hill48':
try:
self.popt, pcov = curve_fit(Hill48, stress, np.zeros(np.shape(stress)[0]))
print self.popt
except:
pass
elif self.name == 'vonmises':
try:
self.popt, pcov = curve_fit(vonMises, stress.transpose(), np.shape(stress)[0])
except:
pass
#---------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------
'''
Runner class
'''
class myThread (threading.Thread):
def __init__(self, threadID):
threading.Thread.__init__(self)
self.threadID = threadID
def run(self):
s.acquire()
conv=converged()
s.release()
while not conv:
doSim(4.,self.name)
s.acquire()
conv=converged()
s.release()
def doSim(delay,thread):
s.acquire()
me=getLoadcase()+1
print('starting sim %i from thread %s'%(me,thread))
f=open('%s.load'%me,'w')
f.write(myLoad.getNext(me))
f.close()
#dummy
voigt = np.random.random_sample(6)*90e6
global stressAll
stressAll=np.append(stressAll,asFullTensor(voigt).reshape(1,9))
stressAll=stressAll.reshape(len(stressAll)//9,9)
myFit.fit(stressAll)
s.release()
time.sleep(delay)
s.acquire()
print('doing postprocessing sim %i from thread %s'%(me,thread))
s.release()
def getLoadcase():
global N_simulations
N_simulations+=1
return N_simulations
def converged():
global N_simulations
global maxN_simulations
if N_simulations < maxN_simulations:
return False
else:
return True
# main
minN_simulations=20
maxN_simulations=10
N_simulations=0
s=threading.Semaphore(1)
scale = 0.02
incs = 10
duration = 10
stressAll=np.zeros(0,'d')
myLoad = Loadcase()
myFit = Criterion('Hill48')
N_threads=3
t=[]
for i in range(N_threads):
t.append(myThread(i))
t[i].start()
for i in range(N_threads):
t[i].join()
a, b = curve_fit(Hill48, stressAll.transpose(), np.zeros(10))
print a
print "Exiting Main Thread"