documenting parameters

This commit is contained in:
Martin Diehl 2020-03-15 13:09:27 +01:00
parent ae49e6710d
commit 9aa9b7ff69
2 changed files with 51 additions and 47 deletions

View File

@ -724,7 +724,7 @@ subroutine constitutive_collectDotState(S, FArray, Fi, FpArray, subdt, ipc, ip,
real(pReal), intent(in) :: &
subdt !< timestep
real(pReal), intent(in), dimension(3,3,homogenization_maxNgrains,discretization_nIP,discretization_nElem) :: &
FArray, & !< elastic deformation gradient
FArray, & !< elastic deformation gradient
FpArray !< plastic deformation gradient
real(pReal), intent(in), dimension(3,3) :: &
Fi !< intermediate deformation gradient

View File

@ -694,8 +694,8 @@ end function math_9to33
pure function math_sym33to6(m33,weighted)
real(pReal), dimension(6) :: math_sym33to6
real(pReal), dimension(3,3), intent(in) :: m33 !< symmetric matrix (no internal check)
logical, optional, intent(in) :: weighted !< weight according to Mandel (.true. by default)
real(pReal), dimension(3,3), intent(in) :: m33 !< symmetric 3x3 matrix (no internal check)
logical, optional, intent(in) :: weighted !< weight according to Mandel (.true. by default)
real(pReal), dimension(6) :: w
integer :: i
@ -722,8 +722,8 @@ end function math_sym33to6
pure function math_6toSym33(v6,weighted)
real(pReal), dimension(3,3) :: math_6toSym33
real(pReal), dimension(6), intent(in) :: v6
logical, optional, intent(in) :: weighted !< weight according to Mandel (.true. by default)
real(pReal), dimension(6), intent(in) :: v6 !< 6 vector
logical, optional, intent(in) :: weighted !< weight according to Mandel (.true. by default)
real(pReal), dimension(6) :: w
integer :: i
@ -780,13 +780,13 @@ end function math_99to3333
!> @brief convert symmetric 3333 matrix into 66 matrix
!> @details Weighted conversion (default) rearranges according to Nye and weights shear
! components according to Mandel. Advisable for matrix operations.
! Unweighted conversion only changes order according to Nye
! Unweighted conversion only rearranges order according to Nye
!--------------------------------------------------------------------------------------------------
pure function math_sym3333to66(m3333,weighted)
real(pReal), dimension(6,6) :: math_sym3333to66
real(pReal), dimension(3,3,3,3), intent(in) :: m3333 !< symmetric matrix (no internal check)
logical, optional, intent(in) :: weighted !< weight according to Mandel (.true. by default)
real(pReal), dimension(3,3,3,3), intent(in) :: m3333 !< symmetric 3x3x3x3 matrix (no internal check)
logical, optional, intent(in) :: weighted !< weight according to Mandel (.true. by default)
real(pReal), dimension(6) :: w
integer :: i,j
@ -808,13 +808,13 @@ end function math_sym3333to66
!> @brief convert 66 matrix into symmetric 3333 matrix
!> @details Weighted conversion (default) rearranges according to Nye and weights shear
! components according to Mandel. Advisable for matrix operations.
! Unweighted conversion only changes order according to Nye
! Unweighted conversion only rearranges order according to Nye
!--------------------------------------------------------------------------------------------------
pure function math_66toSym3333(m66,weighted)
real(pReal), dimension(3,3,3,3) :: math_66toSym3333
real(pReal), dimension(6,6), intent(in) :: m66
logical, optional, intent(in) :: weighted !< weight according to Mandel (.true. by default)
real(pReal), dimension(6,6), intent(in) :: m66 !< 6x6 matrix
logical, optional, intent(in) :: weighted !< weight according to Mandel (.true. by default)
real(pReal), dimension(6) :: w
integer :: i,j
@ -841,7 +841,7 @@ end function math_66toSym3333
pure function math_Voigt66to3333(m66)
real(pReal), dimension(3,3,3,3) :: math_Voigt66to3333
real(pReal), dimension(6,6), intent(in) :: m66
real(pReal), dimension(6,6), intent(in) :: m66 !< 6x6 matrix
integer :: i,j
do i=1,6; do j=1, 6
@ -859,9 +859,10 @@ end function math_Voigt66to3333
!--------------------------------------------------------------------------------------------------
real(pReal) function math_sampleGaussVar(meanvalue, stddev, width)
real(pReal), intent(in) :: meanvalue, & ! meanvalue of gauss distribution
stddev ! standard deviation of gauss distribution
real(pReal), intent(in), optional :: width ! width of considered values as multiples of standard deviation
real(pReal), intent(in) :: meanvalue, & !< meanvalue of gauss distribution
stddev !< standard deviation of gauss distribution
real(pReal), intent(in), optional :: width !< width of considered values as multiples of standard deviation
real(pReal), dimension(2) :: rnd ! random numbers
real(pReal) :: scatter, & ! normalized scatter around meanvalue
width_
@ -893,9 +894,10 @@ end function math_sampleGaussVar
!--------------------------------------------------------------------------------------------------
subroutine math_eigh(m,w,v,error)
real(pReal), dimension(:,:), intent(in) :: m
real(pReal), dimension(size(m,1)), intent(out) :: w
real(pReal), dimension(size(m,1),size(m,1)), intent(out) :: v
real(pReal), dimension(:,:), intent(in) :: m !< quadratic matrix to compute eigenvectors and values of
real(pReal), dimension(size(m,1)), intent(out) :: w !< eigenvalues
real(pReal), dimension(size(m,1),size(m,1)), intent(out) :: v !< eigenvectors
logical, intent(out) :: error
integer :: ierr
real(pReal), dimension((64+2)*size(m,1)) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
@ -919,9 +921,10 @@ end subroutine math_eigh
!--------------------------------------------------------------------------------------------------
subroutine math_eigh33(m,w,v)
real(pReal), dimension(3,3),intent(in) :: m
real(pReal), dimension(3), intent(out) :: w
real(pReal), dimension(3,3),intent(out) :: v
real(pReal), dimension(3,3),intent(in) :: m !< 3x3 matrix to compute eigenvectors and values of
real(pReal), dimension(3), intent(out) :: w !< eigenvalues
real(pReal), dimension(3,3),intent(out) :: v !< eigenvectors
real(pReal) :: T, U, norm, threshold
logical :: error
@ -963,9 +966,10 @@ end subroutine math_eigh33
!--------------------------------------------------------------------------------------------------
pure function math_eigenvectorBasisSym33(m)
real(pReal), dimension(3,3) :: math_eigenvectorBasisSym33
real(pReal), dimension(3) :: invariants, values
real(pReal), dimension(3,3), intent(in) :: m
real(pReal), dimension(3,3) :: math_eigenvectorBasisSym33
real(pReal), dimension(3,3), intent(in) :: m !< quadratic matrix of which the eigenvector basis is computed
real(pReal), dimension(3) :: invariants, v
real(pReal) :: P, Q, rho, phi
real(pReal), parameter :: TOL=1.e-14_pReal
real(pReal), dimension(3,3,3) :: N, EB
@ -977,7 +981,7 @@ pure function math_eigenvectorBasisSym33(m)
Q = -2.0_pReal/27.0_pReal*invariants(1)**3.0_pReal+product(invariants(1:2))/3.0_pReal-invariants(3)
threeSimilarEigenvalues: if(all(abs([P,Q]) < TOL)) then
values = invariants(1)/3.0_pReal
v = invariants(1)/3.0_pReal
! this is not really correct, but at least the basis is correct
EB(1,1,1)=1.0_pReal
EB(2,2,2)=1.0_pReal
@ -985,39 +989,38 @@ pure function math_eigenvectorBasisSym33(m)
else threeSimilarEigenvalues
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
phi=acos(math_clip(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
values = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
[cos(phi/3.0_pReal), &
cos((phi+2.0_pReal*PI)/3.0_pReal), &
cos((phi+4.0_pReal*PI)/3.0_pReal) &
] + invariants(1)/3.0_pReal
N(1:3,1:3,1) = m-values(1)*math_I3
N(1:3,1:3,2) = m-values(2)*math_I3
N(1:3,1:3,3) = m-values(3)*math_I3
twoSimilarEigenvalues: if(abs(values(1)-values(2)) < TOL) then
v = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* [cos(phi/3.0_pReal), &
cos((phi+2.0_pReal*PI)/3.0_pReal), &
cos((phi+4.0_pReal*PI)/3.0_pReal) &
] + invariants(1)/3.0_pReal
N(1:3,1:3,1) = m-v(1)*math_I3
N(1:3,1:3,2) = m-v(2)*math_I3
N(1:3,1:3,3) = m-v(3)*math_I3
twoSimilarEigenvalues: if(abs(v(1)-v(2)) < TOL) then
EB(1:3,1:3,3)=matmul(N(1:3,1:3,1),N(1:3,1:3,2))/ &
((values(3)-values(1))*(values(3)-values(2)))
((v(3)-v(1))*(v(3)-v(2)))
EB(1:3,1:3,1)=math_I3-EB(1:3,1:3,3)
elseif(abs(values(2)-values(3)) < TOL) then twoSimilarEigenvalues
elseif(abs(v(2)-v(3)) < TOL) then twoSimilarEigenvalues
EB(1:3,1:3,1)=matmul(N(1:3,1:3,2),N(1:3,1:3,3))/ &
((values(1)-values(2))*(values(1)-values(3)))
((v(1)-v(2))*(v(1)-v(3)))
EB(1:3,1:3,2)=math_I3-EB(1:3,1:3,1)
elseif(abs(values(3)-values(1)) < TOL) then twoSimilarEigenvalues
elseif(abs(v(3)-v(1)) < TOL) then twoSimilarEigenvalues
EB(1:3,1:3,2)=matmul(N(1:3,1:3,1),N(1:3,1:3,3))/ &
((values(2)-values(1))*(values(2)-values(3)))
((v(2)-v(1))*(v(2)-v(3)))
EB(1:3,1:3,1)=math_I3-EB(1:3,1:3,2)
else twoSimilarEigenvalues
EB(1:3,1:3,1)=matmul(N(1:3,1:3,2),N(1:3,1:3,3))/ &
((values(1)-values(2))*(values(1)-values(3)))
((v(1)-v(2))*(v(1)-v(3)))
EB(1:3,1:3,2)=matmul(N(1:3,1:3,1),N(1:3,1:3,3))/ &
((values(2)-values(1))*(values(2)-values(3)))
((v(2)-v(1))*(v(2)-v(3)))
EB(1:3,1:3,3)=matmul(N(1:3,1:3,1),N(1:3,1:3,2))/ &
((values(3)-values(1))*(values(3)-values(2)))
((v(3)-v(1))*(v(3)-v(2)))
endif twoSimilarEigenvalues
endif threeSimilarEigenvalues
math_eigenvectorBasisSym33 = sqrt(values(1)) * EB(1:3,1:3,1) &
+ sqrt(values(2)) * EB(1:3,1:3,2) &
+ sqrt(values(3)) * EB(1:3,1:3,3)
math_eigenvectorBasisSym33 = sqrt(v(1)) * EB(1:3,1:3,1) &
+ sqrt(v(2)) * EB(1:3,1:3,2) &
+ sqrt(v(3)) * EB(1:3,1:3,3)
end function math_eigenvectorBasisSym33
@ -1050,8 +1053,9 @@ end function math_rotationalPart33
!--------------------------------------------------------------------------------------------------
function math_eigvalsh(m)
real(pReal), dimension(:,:), intent(in) :: m
real(pReal), dimension(:,:), intent(in) :: m !< symmetric matrix to compute eigenvalues of
real(pReal), dimension(size(m,1)) :: math_eigvalsh
real(pReal), dimension(size(m,1),size(m,1)) :: m_
integer :: ierr
real(pReal), dimension((64+2)*size(m,1)) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
@ -1074,7 +1078,7 @@ end function math_eigvalsh
!--------------------------------------------------------------------------------------------------
function math_eigvalsh33(m)
real(pReal), intent(in), dimension(3,3) :: m
real(pReal), intent(in), dimension(3,3) :: m !< 3x3 symmetric matrix to compute eigenvalues of
real(pReal), dimension(3) :: math_eigvalsh33,invariants
real(pReal) :: P, Q, rho, phi
real(pReal), parameter :: TOL=1.e-14_pReal