From 9aa9b7ff69a91324a49cd412e9b32163a252a0c7 Mon Sep 17 00:00:00 2001 From: Martin Diehl Date: Sun, 15 Mar 2020 13:09:27 +0100 Subject: [PATCH] documenting parameters --- src/constitutive.f90 | 2 +- src/math.f90 | 96 +++++++++++++++++++++++--------------------- 2 files changed, 51 insertions(+), 47 deletions(-) diff --git a/src/constitutive.f90 b/src/constitutive.f90 index 2c6831fc2..5c5707d74 100644 --- a/src/constitutive.f90 +++ b/src/constitutive.f90 @@ -724,7 +724,7 @@ subroutine constitutive_collectDotState(S, FArray, Fi, FpArray, subdt, ipc, ip, real(pReal), intent(in) :: & subdt !< timestep real(pReal), intent(in), dimension(3,3,homogenization_maxNgrains,discretization_nIP,discretization_nElem) :: & - FArray, & !< elastic deformation gradient + FArray, & !< elastic deformation gradient FpArray !< plastic deformation gradient real(pReal), intent(in), dimension(3,3) :: & Fi !< intermediate deformation gradient diff --git a/src/math.f90 b/src/math.f90 index c8242d678..0269a7bd5 100644 --- a/src/math.f90 +++ b/src/math.f90 @@ -694,8 +694,8 @@ end function math_9to33 pure function math_sym33to6(m33,weighted) real(pReal), dimension(6) :: math_sym33to6 - real(pReal), dimension(3,3), intent(in) :: m33 !< symmetric matrix (no internal check) - logical, optional, intent(in) :: weighted !< weight according to Mandel (.true. by default) + real(pReal), dimension(3,3), intent(in) :: m33 !< symmetric 3x3 matrix (no internal check) + logical, optional, intent(in) :: weighted !< weight according to Mandel (.true. by default) real(pReal), dimension(6) :: w integer :: i @@ -722,8 +722,8 @@ end function math_sym33to6 pure function math_6toSym33(v6,weighted) real(pReal), dimension(3,3) :: math_6toSym33 - real(pReal), dimension(6), intent(in) :: v6 - logical, optional, intent(in) :: weighted !< weight according to Mandel (.true. by default) + real(pReal), dimension(6), intent(in) :: v6 !< 6 vector + logical, optional, intent(in) :: weighted !< weight according to Mandel (.true. by default) real(pReal), dimension(6) :: w integer :: i @@ -780,13 +780,13 @@ end function math_99to3333 !> @brief convert symmetric 3333 matrix into 66 matrix !> @details Weighted conversion (default) rearranges according to Nye and weights shear ! components according to Mandel. Advisable for matrix operations. -! Unweighted conversion only changes order according to Nye +! Unweighted conversion only rearranges order according to Nye !-------------------------------------------------------------------------------------------------- pure function math_sym3333to66(m3333,weighted) real(pReal), dimension(6,6) :: math_sym3333to66 - real(pReal), dimension(3,3,3,3), intent(in) :: m3333 !< symmetric matrix (no internal check) - logical, optional, intent(in) :: weighted !< weight according to Mandel (.true. by default) + real(pReal), dimension(3,3,3,3), intent(in) :: m3333 !< symmetric 3x3x3x3 matrix (no internal check) + logical, optional, intent(in) :: weighted !< weight according to Mandel (.true. by default) real(pReal), dimension(6) :: w integer :: i,j @@ -808,13 +808,13 @@ end function math_sym3333to66 !> @brief convert 66 matrix into symmetric 3333 matrix !> @details Weighted conversion (default) rearranges according to Nye and weights shear ! components according to Mandel. Advisable for matrix operations. -! Unweighted conversion only changes order according to Nye +! Unweighted conversion only rearranges order according to Nye !-------------------------------------------------------------------------------------------------- pure function math_66toSym3333(m66,weighted) real(pReal), dimension(3,3,3,3) :: math_66toSym3333 - real(pReal), dimension(6,6), intent(in) :: m66 - logical, optional, intent(in) :: weighted !< weight according to Mandel (.true. by default) + real(pReal), dimension(6,6), intent(in) :: m66 !< 6x6 matrix + logical, optional, intent(in) :: weighted !< weight according to Mandel (.true. by default) real(pReal), dimension(6) :: w integer :: i,j @@ -841,7 +841,7 @@ end function math_66toSym3333 pure function math_Voigt66to3333(m66) real(pReal), dimension(3,3,3,3) :: math_Voigt66to3333 - real(pReal), dimension(6,6), intent(in) :: m66 + real(pReal), dimension(6,6), intent(in) :: m66 !< 6x6 matrix integer :: i,j do i=1,6; do j=1, 6 @@ -859,9 +859,10 @@ end function math_Voigt66to3333 !-------------------------------------------------------------------------------------------------- real(pReal) function math_sampleGaussVar(meanvalue, stddev, width) - real(pReal), intent(in) :: meanvalue, & ! meanvalue of gauss distribution - stddev ! standard deviation of gauss distribution - real(pReal), intent(in), optional :: width ! width of considered values as multiples of standard deviation + real(pReal), intent(in) :: meanvalue, & !< meanvalue of gauss distribution + stddev !< standard deviation of gauss distribution + real(pReal), intent(in), optional :: width !< width of considered values as multiples of standard deviation + real(pReal), dimension(2) :: rnd ! random numbers real(pReal) :: scatter, & ! normalized scatter around meanvalue width_ @@ -893,9 +894,10 @@ end function math_sampleGaussVar !-------------------------------------------------------------------------------------------------- subroutine math_eigh(m,w,v,error) - real(pReal), dimension(:,:), intent(in) :: m - real(pReal), dimension(size(m,1)), intent(out) :: w - real(pReal), dimension(size(m,1),size(m,1)), intent(out) :: v + real(pReal), dimension(:,:), intent(in) :: m !< quadratic matrix to compute eigenvectors and values of + real(pReal), dimension(size(m,1)), intent(out) :: w !< eigenvalues + real(pReal), dimension(size(m,1),size(m,1)), intent(out) :: v !< eigenvectors + logical, intent(out) :: error integer :: ierr real(pReal), dimension((64+2)*size(m,1)) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f @@ -919,9 +921,10 @@ end subroutine math_eigh !-------------------------------------------------------------------------------------------------- subroutine math_eigh33(m,w,v) - real(pReal), dimension(3,3),intent(in) :: m - real(pReal), dimension(3), intent(out) :: w - real(pReal), dimension(3,3),intent(out) :: v + real(pReal), dimension(3,3),intent(in) :: m !< 3x3 matrix to compute eigenvectors and values of + real(pReal), dimension(3), intent(out) :: w !< eigenvalues + real(pReal), dimension(3,3),intent(out) :: v !< eigenvectors + real(pReal) :: T, U, norm, threshold logical :: error @@ -963,9 +966,10 @@ end subroutine math_eigh33 !-------------------------------------------------------------------------------------------------- pure function math_eigenvectorBasisSym33(m) - real(pReal), dimension(3,3) :: math_eigenvectorBasisSym33 - real(pReal), dimension(3) :: invariants, values - real(pReal), dimension(3,3), intent(in) :: m + real(pReal), dimension(3,3) :: math_eigenvectorBasisSym33 + real(pReal), dimension(3,3), intent(in) :: m !< quadratic matrix of which the eigenvector basis is computed + + real(pReal), dimension(3) :: invariants, v real(pReal) :: P, Q, rho, phi real(pReal), parameter :: TOL=1.e-14_pReal real(pReal), dimension(3,3,3) :: N, EB @@ -977,7 +981,7 @@ pure function math_eigenvectorBasisSym33(m) Q = -2.0_pReal/27.0_pReal*invariants(1)**3.0_pReal+product(invariants(1:2))/3.0_pReal-invariants(3) threeSimilarEigenvalues: if(all(abs([P,Q]) < TOL)) then - values = invariants(1)/3.0_pReal + v = invariants(1)/3.0_pReal ! this is not really correct, but at least the basis is correct EB(1,1,1)=1.0_pReal EB(2,2,2)=1.0_pReal @@ -985,39 +989,38 @@ pure function math_eigenvectorBasisSym33(m) else threeSimilarEigenvalues rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal phi=acos(math_clip(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal)) - values = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* & - [cos(phi/3.0_pReal), & - cos((phi+2.0_pReal*PI)/3.0_pReal), & - cos((phi+4.0_pReal*PI)/3.0_pReal) & - ] + invariants(1)/3.0_pReal - N(1:3,1:3,1) = m-values(1)*math_I3 - N(1:3,1:3,2) = m-values(2)*math_I3 - N(1:3,1:3,3) = m-values(3)*math_I3 - twoSimilarEigenvalues: if(abs(values(1)-values(2)) < TOL) then + v = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* [cos(phi/3.0_pReal), & + cos((phi+2.0_pReal*PI)/3.0_pReal), & + cos((phi+4.0_pReal*PI)/3.0_pReal) & + ] + invariants(1)/3.0_pReal + N(1:3,1:3,1) = m-v(1)*math_I3 + N(1:3,1:3,2) = m-v(2)*math_I3 + N(1:3,1:3,3) = m-v(3)*math_I3 + twoSimilarEigenvalues: if(abs(v(1)-v(2)) < TOL) then EB(1:3,1:3,3)=matmul(N(1:3,1:3,1),N(1:3,1:3,2))/ & - ((values(3)-values(1))*(values(3)-values(2))) + ((v(3)-v(1))*(v(3)-v(2))) EB(1:3,1:3,1)=math_I3-EB(1:3,1:3,3) - elseif(abs(values(2)-values(3)) < TOL) then twoSimilarEigenvalues + elseif(abs(v(2)-v(3)) < TOL) then twoSimilarEigenvalues EB(1:3,1:3,1)=matmul(N(1:3,1:3,2),N(1:3,1:3,3))/ & - ((values(1)-values(2))*(values(1)-values(3))) + ((v(1)-v(2))*(v(1)-v(3))) EB(1:3,1:3,2)=math_I3-EB(1:3,1:3,1) - elseif(abs(values(3)-values(1)) < TOL) then twoSimilarEigenvalues + elseif(abs(v(3)-v(1)) < TOL) then twoSimilarEigenvalues EB(1:3,1:3,2)=matmul(N(1:3,1:3,1),N(1:3,1:3,3))/ & - ((values(2)-values(1))*(values(2)-values(3))) + ((v(2)-v(1))*(v(2)-v(3))) EB(1:3,1:3,1)=math_I3-EB(1:3,1:3,2) else twoSimilarEigenvalues EB(1:3,1:3,1)=matmul(N(1:3,1:3,2),N(1:3,1:3,3))/ & - ((values(1)-values(2))*(values(1)-values(3))) + ((v(1)-v(2))*(v(1)-v(3))) EB(1:3,1:3,2)=matmul(N(1:3,1:3,1),N(1:3,1:3,3))/ & - ((values(2)-values(1))*(values(2)-values(3))) + ((v(2)-v(1))*(v(2)-v(3))) EB(1:3,1:3,3)=matmul(N(1:3,1:3,1),N(1:3,1:3,2))/ & - ((values(3)-values(1))*(values(3)-values(2))) + ((v(3)-v(1))*(v(3)-v(2))) endif twoSimilarEigenvalues endif threeSimilarEigenvalues - math_eigenvectorBasisSym33 = sqrt(values(1)) * EB(1:3,1:3,1) & - + sqrt(values(2)) * EB(1:3,1:3,2) & - + sqrt(values(3)) * EB(1:3,1:3,3) + math_eigenvectorBasisSym33 = sqrt(v(1)) * EB(1:3,1:3,1) & + + sqrt(v(2)) * EB(1:3,1:3,2) & + + sqrt(v(3)) * EB(1:3,1:3,3) end function math_eigenvectorBasisSym33 @@ -1050,8 +1053,9 @@ end function math_rotationalPart33 !-------------------------------------------------------------------------------------------------- function math_eigvalsh(m) - real(pReal), dimension(:,:), intent(in) :: m + real(pReal), dimension(:,:), intent(in) :: m !< symmetric matrix to compute eigenvalues of real(pReal), dimension(size(m,1)) :: math_eigvalsh + real(pReal), dimension(size(m,1),size(m,1)) :: m_ integer :: ierr real(pReal), dimension((64+2)*size(m,1)) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f @@ -1074,7 +1078,7 @@ end function math_eigvalsh !-------------------------------------------------------------------------------------------------- function math_eigvalsh33(m) - real(pReal), intent(in), dimension(3,3) :: m + real(pReal), intent(in), dimension(3,3) :: m !< 3x3 symmetric matrix to compute eigenvalues of real(pReal), dimension(3) :: math_eigvalsh33,invariants real(pReal) :: P, Q, rho, phi real(pReal), parameter :: TOL=1.e-14_pReal