added more options to command line

This commit is contained in:
Martin Diehl 2014-08-05 14:29:36 +00:00
parent b4b9835d18
commit 96fe818f5d
1 changed files with 95 additions and 54 deletions

View File

@ -28,6 +28,31 @@ def asFullTensor(voigt):
[voigt[3],voigt[1],voigt[4]],\ [voigt[3],voigt[1],voigt[4]],\
[voigt[5],voigt[4],voigt[2]]]) [voigt[5],voigt[4],voigt[2]]])
def Hill48(x, F,G,H,L,M,N):
a = F*(x[1]-x[2])**2 + G*(x[2]-x[0])**2 + H*(x[0]-x[1])** + \
2*L*x[4]**2 + 2*M*x[5]**2 + 2*N*x[3]**2 -1.
return a.ravel()
def vonMises(x, S_y):
sv=np.zeros(0,'d')
for i in xrange(np.shape(x)[1]):
U, l, Vh = svd(np.array(x[:,i]).reshape(3,3))
sv = np.append(sv,l)
sv = sv.reshape(np.shape(x)[1],3)
ooo = (sv[:,2]-sv[:,1])**2+(sv[:,1]-sv[:,0])**2+(sv[:,0]-sv[:,2])**2-2*S_y**2
return ooo.ravel()
fittingCriteria = {
'vonMises':{'fit':np.ones(1,'d'),'err':np.inf},
'hill48' :{'fit':np.ones(6,'d'),'err':np.inf},
'worst' :{'err':np.inf},
'best' :{'err':np.inf}
}
thresholdParameter = ['totalshear','equivalentStrain']
#--------------------------------------------------------------------------------------------------- #---------------------------------------------------------------------------------------------------
class Loadcase(): class Loadcase():
#--------------------------------------------------------------------------------------------------- #---------------------------------------------------------------------------------------------------
@ -73,41 +98,27 @@ class Criterion(object):
''' '''
def __init__(self,name='worst'): def __init__(self,name='worst'):
self.name = name self.name = name
self.results = { self.results = fittingCriteria
'vonmises':{'fit':np.ones(1,'d'),'err':np.inf},
'hill48' :{'fit':np.ones(6,'d'),'err':np.inf}, if self.name.lower() not in map(str.lower, self.results.keys()):
'worst' :{'err':np.inf},
'best' :{'err':np.inf}
}
if self.name.lower() not in self.results.keys():
raise Exception('no suitable fitting criterion selected') raise Exception('no suitable fitting criterion selected')
else: else:
print('fitting to the %s criterion'%name) print('fitting to the %s criterion'%name)
def Hill48(x, F,G,H,L,M,N):
a = F*(x[1]-x[2])**2 + G*(x[2]-x[0])**2 + H*(x[0]-x[1])** + \
2*L*x[4]**2 + 2*M*x[5]**2 + 2*N*x[3]**2 -1.
return a.ravel()
def vonMises(x, S_y):
sv=np.zeros(0,'d')
for i in xrange(np.shape(x)[1]):
U, l, Vh = svd(np.array(x[:,i]).reshape(3,3))
sv = np.append(sv,l)
sv = sv.reshape(np.shape(x)[1],3)
ooo = (sv[:,2]-sv[:,1])**2+(sv[:,1]-sv[:,0])**2+(sv[:,0]-sv[:,2])**2-2*S_y**2
return ooo.ravel()
def fit(self,stress): def fit(self,stress):
try: try:
popt1[0], pcov = curve_fit(vonMises, stress, np.zeros(np.shape(stress)[1]),p0=popt1[0]) #popt1[0], pcov = curve_fit(self.vonMises, stress, np.zeros(np.shape(stress)[1]),p0=popt1[0])
print 'Mises', popt1[0], pcov popt, pcov = curve_fit(vonMises, stress, np.zeros(np.shape(stress)[1]))
perr = np.sqrt(np.diag(pcov))
print 'Mises', popt, perr
except Exception as detail: except Exception as detail:
print detail print detail
pass pass
try: try:
popt1[1], pcov = curve_fit(Hill48, stress, np.zeros(np.shape(stress)[1]),p0=popt1[1]) popt, pcov = curve_fit(Hill48, stress, np.zeros(np.shape(stress)[1]))
print 'Hill48', popt1[1], pcov #popt1[1], pcov = curve_fit(self.Hill48, stress, np.zeros(np.shape(stress)[1]),p0=popt1[1])
perr = np.sqrt(np.diag(pcov))
print 'Hill48', popt, perr
except Exception as detail: except Exception as detail:
print detail print detail
pass pass
@ -134,7 +145,6 @@ class myThread (threading.Thread):
def doSim(delay,thread): def doSim(delay,thread):
global options.geometry
s.acquire() s.acquire()
me=getLoadcase() me=getLoadcase()
if not os.path.isfile('%s.load'%me): if not os.path.isfile('%s.load'%me):
@ -156,6 +166,9 @@ def doSim(delay,thread):
if not os.path.isfile('./postProc/%s_%i.txt'%(options.geometry,me)): if not os.path.isfile('./postProc/%s_%i.txt'%(options.geometry,me)):
print('starting post processing for sim %i from %s'%(me,thread)) print('starting post processing for sim %i from %s'%(me,thread))
s.release() s.release()
try:
execute('postResults --cr f,p --co totalshear %s_%i.spectralOut'%(options.geometry,me))
except:
execute('postResults --cr f,p %s_%i.spectralOut'%(options.geometry,me)) execute('postResults --cr f,p %s_%i.spectralOut'%(options.geometry,me))
execute('addCauchy ./postProc/%s_%i.txt'%(options.geometry,me)) execute('addCauchy ./postProc/%s_%i.txt'%(options.geometry,me))
execute('addStrainTensors -l -v ./postProc/%s_%i.txt'%(options.geometry,me)) execute('addStrainTensors -l -v ./postProc/%s_%i.txt'%(options.geometry,me))
@ -169,16 +182,25 @@ def doSim(delay,thread):
refFile = open('./postProc/%s_%i.txt'%(options.geometry,me)) refFile = open('./postProc/%s_%i.txt'%(options.geometry,me))
table = damask.ASCIItable(refFile) table = damask.ASCIItable(refFile)
table.head_read() table.head_read()
if options.fitting =='equivalentStrain' :
for l in ['Mises(ln(V))','1_Cauchy']: for l in ['Mises(ln(V))','1_Cauchy']:
if l not in table.labels: print '%s not found'%l if l not in table.labels: print '%s not found'%l
while table.data_read(): while table.data_read():
if float(table.data[table.labels.index('Mises(ln(V))')]) > 0.002: if float(table.data[table.labels.index('Mises(ln(V))')]) > options.yieldValue:
yieldStress = np.array(table.data[table.labels.index('1_Cauchy'):table.labels.index('9_Cauchy')+1],'d')/10.e8
elif options.fitting =='totalshear' :
for l in ['totalshear','1_Cauchy']:
if l not in table.labels: print '%s not found'%l
while table.data_read():
if float(table.data[table.labels.index('totalshear')]) > options.yieldValue:
yieldStress = np.array(table.data[table.labels.index('1_Cauchy'):table.labels.index('9_Cauchy')+1],'d')/10.e8 yieldStress = np.array(table.data[table.labels.index('1_Cauchy'):table.labels.index('9_Cauchy')+1],'d')/10.e8
s.acquire() s.acquire()
print('starting fitting for sim %i from %s'%(me,thread))
global stressAll global stressAll
stressAll=np.append(yieldStress,stressAll) stressAll=np.append(yieldStress,stressAll)
print np.shape(stressAll)
print('starting fitting for sim %i from %s'%(me,thread))
myFit.fit(stressAll.reshape(len(stressAll)//9,9).transpose()) myFit.fit(stressAll.reshape(len(stressAll)//9,9).transpose())
s.release() s.release()
@ -189,8 +211,7 @@ def getLoadcase():
def converged(): def converged():
global N_simulations global N_simulations
global maxN_simulations if N_simulations < options.max:
if N_simulations < maxN_simulations:
return False return False
else: else:
return True return True
@ -206,40 +227,60 @@ Performs calculations with various loads on given geometry file and fits yield s
) )
parser.add_option('-l','--load' , dest='load', type='float', nargs=3, parser.add_option('-l','--load' , dest='load', type='float', nargs=3,
help='load: final strain; increments; time', metavar='float int float') help='load: final strain; increments; time %default', metavar='float int float')
parser.add_option('-g','--geometry', dest='geometry', type='string', parser.add_option('-g','--geometry', dest='geometry', type='string',
help='name of the geometry file', metavar='string') help='name of the geometry file [%default]', metavar='string')
parser.add_option('-c','--criterion',dest='criterion', action='extend', type='string', # this should be a choice parser.add_option('--criterion', dest='criterion', action='store', choices=fittingCriteria.keys(),
help='(list of) formulas corresponding to labels', metavar='<LIST>') help='criterion for stopping simulations [%default]', metavar='string')
parser.add_option('-c','--criterion',dest='fittin', action='extend', type='string', # this should be a choice parser.add_option('--fitting', dest='fitting', action='store', choices=thresholdParameter,
help='(list of) formulas corresponding to labels', metavar='<LIST>') help='yield criterion [%default]', metavar='string')
parser.add_option('--yieldvalue', dest='yieldValue', action='store', type='float',
help='yield criterion [%default]', metavar='float')
parser.add_option('--min', dest='min', type='int', parser.add_option('--min', dest='min', type='int',
help='minimum number of simulations', metavar='int') help='minimum number of simulations [%default]', metavar='int')
parser.add_option('--max', dest='max', type='int', parser.add_option('--max', dest='max', type='int',
help='maximum number of iterations', metavar='int') help='maximum number of iterations [%default]', metavar='int')
parser.add_option('--threads', dest='threads', type='int', parser.add_option('--threads', dest='threads', type='int',
help='number of parallel executions', metavar='int') help='number of parallel executions [%default]', metavar='int')
parser.set_defaults(min = 12) parser.set_defaults(min = 12)
parser.set_defaults(max = 30) parser.set_defaults(max = 30)
parser.set_defaults(threads = 4) parser.set_defaults(threads = 4)
parser.set_defaults(yieldValue = 0.002)
parser.set_defaults(load = [0.008,80,80.0]) parser.set_defaults(load = [0.008,80,80.0])
parser.set_defaults(criterion = 'worst')
parser.set_defaults(fitting = 'totalshear')
parser.set_defaults(geometry = '20grains16x16x16') parser.set_defaults(geometry = '20grains16x16x16')
options = parser.parse_args()[0] options = parser.parse_args()[0]
if not os.path.isfile(options.geometry+'.geom'):
parser.error('geometry file %s.geom not found'%options.geometry)
if not os.path.isfile('material.config'):
parser.error('material.config file not found')
if options.threads<1:
parser.error('invalid number of threads %i'%options.threads)
if options.min<0:
parser.error('invalid minimum number of simulations %i'%options.min)
if options.max<options.min:
parser.error('invalid maximumb number of simulations (below minimum)')
if not os.path.isfile('numerics.config'):
print('numerics.config file not found')
N_simulations=0 N_simulations=0
s=threading.Semaphore(1) s=threading.Semaphore(1)
stressAll=np.zeros(0,'d').reshape(0,0) stressAll=np.zeros(0,'d').reshape(0,0)
myLoad = Loadcase(options.load[0],options.load[1],options.load[2]) myLoad = Loadcase(options.load[0],options.load[1],options.load[2])
myFit = Criterion('vonmises') myFit = Criterion(options.criterion)
threads=[]
for i in range(options.threads): for i in range(options.threads):
t.append(myThread(i)) threads.append(myThread(i))
t[i].start() threads[i].start()
for i in range(options.threads): for i in range(options.threads):
t[i].join() threads[i].join()
print 'finished fitting to yield criteria' print 'finished fitting to yield criteria'