287 lines
10 KiB
Python
Executable File
287 lines
10 KiB
Python
Executable File
#!/usr/bin/python
|
|
# -*- coding: UTF-8 no BOM -*-
|
|
|
|
import threading,time,os,subprocess,shlex,string
|
|
import numpy as np
|
|
from scipy.optimize import curve_fit
|
|
from scipy.linalg import svd
|
|
from optparse import OptionParser
|
|
import damask
|
|
|
|
scriptID = '$Id$'
|
|
scriptName = scriptID.split()[1]
|
|
|
|
def execute(cmd,dir='./'):
|
|
|
|
initialPath=os.getcwd()
|
|
os.chdir(dir)
|
|
out = ''
|
|
line = True
|
|
process = subprocess.Popen(shlex.split(cmd),stdout=subprocess.PIPE,stderr = subprocess.STDOUT)
|
|
while line:
|
|
line = process.stdout.readline()
|
|
out += line
|
|
os.chdir(initialPath)
|
|
|
|
def asFullTensor(voigt):
|
|
return np.array([[voigt[0],voigt[3],voigt[5]],\
|
|
[voigt[3],voigt[1],voigt[4]],\
|
|
[voigt[5],voigt[4],voigt[2]]])
|
|
|
|
|
|
def Hill48(x, F,G,H,L,M,N):
|
|
a = F*(x[1]-x[2])**2 + G*(x[2]-x[0])**2 + H*(x[0]-x[1])** + \
|
|
2*L*x[4]**2 + 2*M*x[5]**2 + 2*N*x[3]**2 -1.
|
|
return a.ravel()
|
|
|
|
|
|
def vonMises(x, S_y):
|
|
sv=np.zeros(0,'d')
|
|
for i in xrange(np.shape(x)[1]):
|
|
U, l, Vh = svd(np.array(x[:,i]).reshape(3,3))
|
|
sv = np.append(sv,l)
|
|
sv = sv.reshape(np.shape(x)[1],3)
|
|
ooo = (sv[:,2]-sv[:,1])**2+(sv[:,1]-sv[:,0])**2+(sv[:,0]-sv[:,2])**2-2*S_y**2
|
|
return ooo.ravel()
|
|
|
|
|
|
fittingCriteria = {
|
|
'vonMises':{'fit':np.ones(1,'d'),'err':np.inf},
|
|
'hill48' :{'fit':np.ones(6,'d'),'err':np.inf},
|
|
'worst' :{'err':np.inf},
|
|
'best' :{'err':np.inf}
|
|
}
|
|
thresholdParameter = ['totalshear','equivalentStrain']
|
|
|
|
#---------------------------------------------------------------------------------------------------
|
|
class Loadcase():
|
|
#---------------------------------------------------------------------------------------------------
|
|
'''
|
|
Class for generating load cases for the spectral solver
|
|
'''
|
|
|
|
# ------------------------------------------------------------------
|
|
def __init__(self,finalStrain,incs,time):
|
|
print('using the random load case generator')
|
|
self.finalStrain = finalStrain
|
|
self.incs = incs
|
|
self.time = time
|
|
|
|
def getLoadcase(self,N=0):
|
|
defgrad=['*']*9
|
|
stress =[0]*9
|
|
values=(np.random.random_sample(9)-.5)*self.finalStrain*2
|
|
|
|
main=np.array([0,4,8])
|
|
np.random.shuffle(main)
|
|
for i in main[:2]: # fill 2 out of 3 main entries
|
|
defgrad[i]=1.+values[i]
|
|
stress[i]='*'
|
|
for off in [[1,3,0],[2,6,0],[5,7,0]]: # fill 3 off-diagonal pairs of defgrad (1 or 2 entries)
|
|
off=np.array(off)
|
|
np.random.shuffle(off)
|
|
for i in off[0:2]:
|
|
if i != 0:
|
|
defgrad[i]=values[i]
|
|
stress[i]='*'
|
|
|
|
return 'f '+' '.join(str(c) for c in defgrad)+\
|
|
' p '+' '.join(str(c) for c in stress)+\
|
|
' incs %s'%self.incs+\
|
|
' time %s'%self.time
|
|
|
|
#---------------------------------------------------------------------------------------------------
|
|
class Criterion(object):
|
|
#---------------------------------------------------------------------------------------------------
|
|
'''
|
|
Fitting to certain criterion
|
|
'''
|
|
def __init__(self,name='worst'):
|
|
self.name = name
|
|
self.results = fittingCriteria
|
|
|
|
if self.name.lower() not in map(str.lower, self.results.keys()):
|
|
raise Exception('no suitable fitting criterion selected')
|
|
else:
|
|
print('fitting to the %s criterion'%name)
|
|
|
|
def fit(self,stress):
|
|
try:
|
|
#popt1[0], pcov = curve_fit(self.vonMises, stress, np.zeros(np.shape(stress)[1]),p0=popt1[0])
|
|
popt, pcov = curve_fit(vonMises, stress, np.zeros(np.shape(stress)[1]))
|
|
perr = np.sqrt(np.diag(pcov))
|
|
print 'Mises', popt, perr
|
|
except Exception as detail:
|
|
print detail
|
|
pass
|
|
try:
|
|
popt, pcov = curve_fit(Hill48, stress, np.zeros(np.shape(stress)[1]))
|
|
#popt1[1], pcov = curve_fit(self.Hill48, stress, np.zeros(np.shape(stress)[1]),p0=popt1[1])
|
|
perr = np.sqrt(np.diag(pcov))
|
|
print 'Hill48', popt, perr
|
|
except Exception as detail:
|
|
print detail
|
|
pass
|
|
|
|
|
|
#---------------------------------------------------------------------------------------------------
|
|
class myThread (threading.Thread):
|
|
#---------------------------------------------------------------------------------------------------
|
|
'''
|
|
Runner class
|
|
'''
|
|
def __init__(self, threadID):
|
|
threading.Thread.__init__(self)
|
|
self.threadID = threadID
|
|
def run(self):
|
|
s.acquire()
|
|
conv=converged()
|
|
s.release()
|
|
while not conv:
|
|
doSim(4.,self.name)
|
|
s.acquire()
|
|
conv=converged()
|
|
s.release()
|
|
|
|
def doSim(delay,thread):
|
|
|
|
s.acquire()
|
|
me=getLoadcase()
|
|
if not os.path.isfile('%s.load'%me):
|
|
print('generating loadcase for sim %s from %s'%(me,thread))
|
|
f=open('%s.load'%me,'w')
|
|
f.write(myLoad.getLoadcase(me))
|
|
f.close()
|
|
s.release()
|
|
else: s.release()
|
|
|
|
s.acquire()
|
|
if not os.path.isfile('%s_%i.spectralOut'%(options.geometry,me)):
|
|
print('starting simulation %s from %s'%(me,thread))
|
|
s.release()
|
|
execute('DAMASK_spectral -g %s -l %i'%(options.geometry,me))
|
|
else: s.release()
|
|
|
|
s.acquire()
|
|
if not os.path.isfile('./postProc/%s_%i.txt'%(options.geometry,me)):
|
|
print('starting post processing for sim %i from %s'%(me,thread))
|
|
s.release()
|
|
try:
|
|
execute('postResults --cr f,p --co totalshear %s_%i.spectralOut'%(options.geometry,me))
|
|
except:
|
|
execute('postResults --cr f,p %s_%i.spectralOut'%(options.geometry,me))
|
|
execute('addCauchy ./postProc/%s_%i.txt'%(options.geometry,me))
|
|
execute('addStrainTensors -l -v ./postProc/%s_%i.txt'%(options.geometry,me))
|
|
execute('addMises -s Cauchy -e ln(V) ./postProc/%s_%i.txt'%(options.geometry,me))
|
|
else: s.release()
|
|
|
|
s.acquire()
|
|
print('reading values for sim %i from %s'%(me,thread))
|
|
s.release()
|
|
|
|
refFile = open('./postProc/%s_%i.txt'%(options.geometry,me))
|
|
table = damask.ASCIItable(refFile)
|
|
table.head_read()
|
|
if options.fitting =='equivalentStrain' :
|
|
for l in ['Mises(ln(V))','1_Cauchy']:
|
|
if l not in table.labels: print '%s not found'%l
|
|
while table.data_read():
|
|
if float(table.data[table.labels.index('Mises(ln(V))')]) > options.yieldValue:
|
|
yieldStress = np.array(table.data[table.labels.index('1_Cauchy'):table.labels.index('9_Cauchy')+1],'d')/10.e8
|
|
elif options.fitting =='totalshear' :
|
|
for l in ['totalshear','1_Cauchy']:
|
|
if l not in table.labels: print '%s not found'%l
|
|
while table.data_read():
|
|
if float(table.data[table.labels.index('totalshear')]) > options.yieldValue:
|
|
yieldStress = np.array(table.data[table.labels.index('1_Cauchy'):table.labels.index('9_Cauchy')+1],'d')/10.e8
|
|
|
|
s.acquire()
|
|
|
|
global stressAll
|
|
stressAll=np.append(yieldStress,stressAll)
|
|
print np.shape(stressAll)
|
|
print('starting fitting for sim %i from %s'%(me,thread))
|
|
myFit.fit(stressAll.reshape(len(stressAll)//9,9).transpose())
|
|
s.release()
|
|
|
|
def getLoadcase():
|
|
global N_simulations
|
|
N_simulations+=1
|
|
return N_simulations
|
|
|
|
def converged():
|
|
global N_simulations
|
|
if N_simulations < options.max:
|
|
return False
|
|
else:
|
|
return True
|
|
|
|
# --------------------------------------------------------------------
|
|
# MAIN
|
|
# --------------------------------------------------------------------
|
|
|
|
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
|
Performs calculations with various loads on given geometry file and fits yield surface.
|
|
|
|
""", version=string.replace(scriptID,'\n','\\n')
|
|
)
|
|
|
|
parser.add_option('-l','--load' , dest='load', type='float', nargs=3,
|
|
help='load: final strain; increments; time %default', metavar='float int float')
|
|
parser.add_option('-g','--geometry', dest='geometry', type='string',
|
|
help='name of the geometry file [%default]', metavar='string')
|
|
parser.add_option('--criterion', dest='criterion', action='store', choices=fittingCriteria.keys(),
|
|
help='criterion for stopping simulations [%default]', metavar='string')
|
|
parser.add_option('--fitting', dest='fitting', action='store', choices=thresholdParameter,
|
|
help='yield criterion [%default]', metavar='string')
|
|
parser.add_option('--yieldvalue', dest='yieldValue', action='store', type='float',
|
|
help='yield criterion [%default]', metavar='float')
|
|
parser.add_option('--min', dest='min', type='int',
|
|
help='minimum number of simulations [%default]', metavar='int')
|
|
parser.add_option('--max', dest='max', type='int',
|
|
help='maximum number of iterations [%default]', metavar='int')
|
|
parser.add_option('--threads', dest='threads', type='int',
|
|
help='number of parallel executions [%default]', metavar='int')
|
|
parser.set_defaults(min = 12)
|
|
parser.set_defaults(max = 30)
|
|
parser.set_defaults(threads = 4)
|
|
parser.set_defaults(yieldValue = 0.002)
|
|
parser.set_defaults(load = [0.008,80,80.0])
|
|
parser.set_defaults(criterion = 'worst')
|
|
parser.set_defaults(fitting = 'totalshear')
|
|
parser.set_defaults(geometry = '20grains16x16x16')
|
|
|
|
options = parser.parse_args()[0]
|
|
|
|
if not os.path.isfile(options.geometry+'.geom'):
|
|
parser.error('geometry file %s.geom not found'%options.geometry)
|
|
if not os.path.isfile('material.config'):
|
|
parser.error('material.config file not found')
|
|
if options.threads<1:
|
|
parser.error('invalid number of threads %i'%options.threads)
|
|
if options.min<0:
|
|
parser.error('invalid minimum number of simulations %i'%options.min)
|
|
if options.max<options.min:
|
|
parser.error('invalid maximumb number of simulations (below minimum)')
|
|
|
|
if not os.path.isfile('numerics.config'):
|
|
print('numerics.config file not found')
|
|
|
|
N_simulations=0
|
|
s=threading.Semaphore(1)
|
|
|
|
stressAll=np.zeros(0,'d').reshape(0,0)
|
|
myLoad = Loadcase(options.load[0],options.load[1],options.load[2])
|
|
myFit = Criterion(options.criterion)
|
|
|
|
threads=[]
|
|
|
|
for i in range(options.threads):
|
|
threads.append(myThread(i))
|
|
threads[i].start()
|
|
|
|
for i in range(options.threads):
|
|
threads[i].join()
|
|
|
|
print 'finished fitting to yield criteria'
|