Merge branch 'RegularGridInterpolator' into 'development'
grid assemble + corrected grid.scale See merge request damask/DAMASK!643
This commit is contained in:
commit
953d5769a0
|
@ -10,7 +10,7 @@ from pathlib import Path
|
|||
import numpy as np
|
||||
import pandas as pd
|
||||
import h5py
|
||||
from scipy import ndimage, spatial
|
||||
from scipy import ndimage, spatial, interpolate
|
||||
|
||||
from . import VTK
|
||||
from . import util
|
||||
|
@ -41,7 +41,7 @@ class Grid:
|
|||
|
||||
Parameters
|
||||
----------
|
||||
material : numpy.ndarray, shape (:,:,:)
|
||||
material : numpy.ndarray of int, shape (:,:,:)
|
||||
Material indices. The shape of the material array defines
|
||||
the number of cells.
|
||||
size : sequence of float, len (3)
|
||||
|
@ -50,7 +50,7 @@ class Grid:
|
|||
Coordinates of grid origin in meter. Defaults to [0.0,0.0,0.0].
|
||||
initial_conditions : dictionary, optional
|
||||
Labels and values of the inital conditions at each material point.
|
||||
comments : str or iterable of str, optional
|
||||
comments : str or sequence of str, optional
|
||||
Additional, human-readable information, e.g. history of operations.
|
||||
|
||||
"""
|
||||
|
@ -183,7 +183,7 @@ class Grid:
|
|||
@comments.setter
|
||||
def comments(self,
|
||||
comments: Union[str, Sequence[str]]):
|
||||
self._comments = [str(c) for c in comments] if isinstance(comments,list) else [str(comments)]
|
||||
self._comments = [str(c) for c in comments] if isinstance(comments,Sequence) else [str(comments)]
|
||||
|
||||
|
||||
@property
|
||||
|
@ -427,7 +427,7 @@ class Grid:
|
|||
coordinates : str
|
||||
Label of the vector column containing the spatial coordinates.
|
||||
Need to be ordered (1./x fast, 3./z slow).
|
||||
labels : (list of) str
|
||||
labels : str or sequence of str
|
||||
Label(s) of the columns containing the material definition.
|
||||
Each unique combination of values results in one material ID.
|
||||
|
||||
|
@ -474,7 +474,7 @@ class Grid:
|
|||
Number of cells in x,y,z direction.
|
||||
size : sequence of float, len (3)
|
||||
Physical size of the grid in meter.
|
||||
seeds : numpy.ndarray, shape (:,3)
|
||||
seeds : numpy.ndarray of float, shape (:,3)
|
||||
Position of the seed points in meter. All points need to lay within the box.
|
||||
weights : sequence of float, len (seeds.shape[0])
|
||||
Weights of the seeds. Setting all weights to 1.0 gives a standard Voronoi tessellation.
|
||||
|
@ -531,7 +531,7 @@ class Grid:
|
|||
Number of cells in x,y,z direction.
|
||||
size : sequence of float, len (3)
|
||||
Physical size of the grid in meter.
|
||||
seeds : numpy.ndarray, shape (:,3)
|
||||
seeds : numpy.ndarray of float, shape (:,3)
|
||||
Position of the seed points in meter. All points need to lay within the box.
|
||||
material : sequence of int, len (seeds.shape[0]), optional
|
||||
Material ID of the seeds.
|
||||
|
@ -940,17 +940,14 @@ class Grid:
|
|||
|
||||
|
||||
def scale(self,
|
||||
cells: IntSequence,
|
||||
periodic: bool = True) -> 'Grid':
|
||||
cells: IntSequence) -> 'Grid':
|
||||
"""
|
||||
Scale grid to new cells.
|
||||
Scale grid to new cell count.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cells : sequence of int, len (3)
|
||||
Number of cells in x,y,z direction.
|
||||
periodic : bool, optional
|
||||
Assume grid to be periodic. Defaults to True.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -963,7 +960,11 @@ class Grid:
|
|||
|
||||
>>> import numpy as np
|
||||
>>> import damask
|
||||
>>> g = damask.Grid(np.zeros([32]*3,int),np.ones(3)*1e-4)
|
||||
>>> (g := damask.Grid(np.zeros([32]*3,int),np.ones(3)*1e-4))
|
||||
cells: 32 × 32 × 32
|
||||
size: 0.0001 × 0.0001 × 0.0001 m³
|
||||
origin: 0.0 0.0 0.0 m
|
||||
# materials: 1
|
||||
>>> g.scale(g.cells*2)
|
||||
cells : 64 x 64 x 64
|
||||
size : 0.0001 x 0.0001 x 0.0001 m³
|
||||
|
@ -971,20 +972,49 @@ class Grid:
|
|||
# materials: 1
|
||||
|
||||
"""
|
||||
return Grid(material = ndimage.interpolation.zoom(
|
||||
self.material,
|
||||
cells/self.cells,
|
||||
output=self.material.dtype,
|
||||
order=0,
|
||||
mode='wrap' if periodic else 'nearest',
|
||||
prefilter=False
|
||||
),
|
||||
options = ('nearest',False,None)
|
||||
orig = tuple(map(np.linspace,self.origin + self.size/self.cells*.5,
|
||||
self.origin + self.size - self.size/self.cells*.5,self.cells))
|
||||
new = grid_filters.coordinates0_point(cells,self.size,self.origin)
|
||||
|
||||
return Grid(material = interpolate.RegularGridInterpolator(orig,self.material,*options)(new).astype(int),
|
||||
size = self.size,
|
||||
origin = self.origin,
|
||||
initial_conditions = {k: interpolate.RegularGridInterpolator(orig,v,*options)(new)
|
||||
for k,v in self.initial_conditions.items()},
|
||||
comments = self.comments+[util.execution_stamp('Grid','scale')],
|
||||
)
|
||||
|
||||
|
||||
def assemble(self,
|
||||
idx: np.ndarray) -> 'Grid':
|
||||
"""
|
||||
Assemble new grid from index map.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
idx : numpy.ndarray of int, shape (:,:,:) or (:,:,:,3)
|
||||
Grid of flat indices or coordinate indices.
|
||||
|
||||
Returns
|
||||
-------
|
||||
updated : damask.Grid
|
||||
Updated grid-based geometry.
|
||||
Cell count of resulting grid matches shape of index map.
|
||||
|
||||
"""
|
||||
cells = idx.shape[:3]
|
||||
flat = (idx if len(idx.shape)==3 else grid_filters.ravel_index(idx)).flatten(order='F')
|
||||
ic = {k: v.flatten(order='F')[flat].reshape(cells,order='F') for k,v in self.initial_conditions.items()}
|
||||
|
||||
return Grid(material = self.material.flatten(order='F')[flat].reshape(cells,order='F'),
|
||||
size = self.size,
|
||||
origin = self.origin,
|
||||
initial_conditions = ic,
|
||||
comments = self.comments+[util.execution_stamp('Grid','assemble')],
|
||||
)
|
||||
|
||||
|
||||
def renumber(self) -> 'Grid':
|
||||
"""
|
||||
Renumber sorted material indices as 0,...,N-1.
|
||||
|
@ -1113,13 +1143,13 @@ class Grid:
|
|||
selection_ = None if selection is None else \
|
||||
set(self.material.flatten()) - set(util.aslist(selection)) if invert_selection else \
|
||||
set(self.material.flatten()) & set(util.aslist(selection))
|
||||
material = ndimage.filters.generic_filter(
|
||||
self.material,
|
||||
most_frequent,
|
||||
footprint=footprint,
|
||||
mode='wrap' if periodic else 'nearest',
|
||||
extra_keywords=dict(selection=selection_,rng=rng),
|
||||
).astype(self.material.dtype)
|
||||
material = ndimage.generic_filter(
|
||||
self.material,
|
||||
most_frequent,
|
||||
footprint=footprint,
|
||||
mode='wrap' if periodic else 'nearest',
|
||||
extra_keywords=dict(selection=selection_,rng=rng),
|
||||
).astype(self.material.dtype)
|
||||
return Grid(material = material,
|
||||
size = self.size,
|
||||
origin = self.origin,
|
||||
|
@ -1269,12 +1299,12 @@ class Grid:
|
|||
selection_ = None if selection is None else \
|
||||
set(self.material.flatten()) - set(util.aslist(selection)) if invert_selection else \
|
||||
set(self.material.flatten()) & set(util.aslist(selection))
|
||||
mask = ndimage.filters.generic_filter(self.material,
|
||||
tainted_neighborhood,
|
||||
footprint=footprint,
|
||||
mode='wrap' if periodic else 'nearest',
|
||||
extra_keywords=dict(selection=selection_),
|
||||
)
|
||||
mask = ndimage.generic_filter(self.material,
|
||||
tainted_neighborhood,
|
||||
footprint=footprint,
|
||||
mode='wrap' if periodic else 'nearest',
|
||||
extra_keywords=dict(selection=selection_),
|
||||
)
|
||||
|
||||
return Grid(material = np.where(mask, self.material + offset_,self.material),
|
||||
size = self.size,
|
||||
|
|
|
@ -541,28 +541,118 @@ def coordinates0_valid(coordinates0: _np.ndarray) -> bool:
|
|||
return False
|
||||
|
||||
|
||||
def unravel_index(idx: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Convert flat indices to coordinate indices.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
idx : numpy.ndarray, shape (:,:,:)
|
||||
Grid of flat indices.
|
||||
|
||||
Returns
|
||||
-------
|
||||
unravelled : numpy.ndarray, shape (:,:,:,3)
|
||||
Grid of coordinate indices.
|
||||
|
||||
Examples
|
||||
--------
|
||||
Unravel a linearly increasing sequence of material indices on a 3 × 2 × 1 grid.
|
||||
|
||||
>>> import numpy as np
|
||||
>>> import damask
|
||||
>>> seq = np.arange(6).reshape((3,2,1),order='F')
|
||||
>>> (coord_idx := damask.grid_filters.unravel_index(seq))
|
||||
array([[[[0, 0, 0]],
|
||||
|
||||
[[0, 1, 0]]],
|
||||
|
||||
|
||||
[[[1, 0, 0]],
|
||||
|
||||
[[1, 1, 0]]],
|
||||
|
||||
|
||||
[[[2, 0, 0]],
|
||||
|
||||
[[2, 1, 0]]]])
|
||||
>>> coord_idx[1,1,0]
|
||||
array([1, 1, 0])
|
||||
|
||||
"""
|
||||
cells = idx.shape
|
||||
idx_ = _np.expand_dims(idx,3)
|
||||
return _np.block([ idx_ %cells[0],
|
||||
(idx_//cells[0]) %cells[1],
|
||||
((idx_//cells[0])//cells[1])%cells[2]])
|
||||
|
||||
def ravel_index(idx: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Convert coordinate indices to flat indices.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
idx : numpy.ndarray, shape (:,:,:,3)
|
||||
Grid of coordinate indices.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ravelled : numpy.ndarray, shape (:,:,:)
|
||||
Grid of flat indices.
|
||||
|
||||
Examples
|
||||
--------
|
||||
Ravel a reversed sequence of coordinate indices on a 2 × 2 × 1 grid.
|
||||
|
||||
>>> import numpy as np
|
||||
>>> import damask
|
||||
>>> (rev := np.array([[1,1,0],[0,1,0],[1,0,0],[0,0,0]]).reshape((2,2,1,3)))
|
||||
array([[[[1, 1, 0]],
|
||||
|
||||
[[0, 1, 0]]],
|
||||
|
||||
|
||||
[[[1, 0, 0]],
|
||||
|
||||
[[0, 0, 0]]]])
|
||||
>>> (flat_idx := damask.grid_filters.ravel_index(rev))
|
||||
array([[[3],
|
||||
[2]],
|
||||
|
||||
[[1],
|
||||
[0]]])
|
||||
|
||||
"""
|
||||
cells = idx.shape[:3]
|
||||
return idx[:,:,:,0] \
|
||||
+ idx[:,:,:,1]*cells[0] \
|
||||
+ idx[:,:,:,2]*cells[0]*cells[1]
|
||||
|
||||
|
||||
def regrid(size: _FloatSequence,
|
||||
F: _np.ndarray,
|
||||
cells: _IntSequence) -> _np.ndarray:
|
||||
"""
|
||||
Return mapping from coordinates in deformed configuration to a regular grid.
|
||||
Map a deformed grid A back to a rectilinear grid B.
|
||||
|
||||
The size of grid B is chosen as the average deformed size of grid A.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
size : sequence of float, len (3)
|
||||
Physical size.
|
||||
F : numpy.ndarray, shape (:,:,:,3,3), shape (:,:,:,3,3)
|
||||
Deformation gradient field.
|
||||
Physical size of grid A.
|
||||
F : numpy.ndarray, shape (:,:,:,3,3)
|
||||
Deformation gradient field on grid A.
|
||||
cells : sequence of int, len (3)
|
||||
Cell count along x,y,z of remapping grid.
|
||||
Cell count along x,y,z of grid B.
|
||||
|
||||
Returns
|
||||
-------
|
||||
idx : numpy.ndarray of int, shape (cells)
|
||||
Flat index of closest point on deformed grid A for each point on grid B.
|
||||
|
||||
"""
|
||||
c = coordinates_point(size,F)
|
||||
|
||||
outer = _np.dot(_np.average(F,axis=(0,1,2)),size)
|
||||
for d in range(3):
|
||||
c[_np.where(c[:,:,:,d]<0)] += outer[d]
|
||||
c[_np.where(c[:,:,:,d]>outer[d])] -= outer[d]
|
||||
|
||||
tree = _spatial.cKDTree(c.reshape(-1,3),boxsize=outer)
|
||||
return tree.query(coordinates0_point(cells,outer))[1].flatten()
|
||||
box = _np.dot(_np.average(F,axis=(0,1,2)),size)
|
||||
c = coordinates_point(size,F)%box
|
||||
tree = _spatial.cKDTree(c.reshape((-1,3),order='F'),boxsize=box)
|
||||
return tree.query(coordinates0_point(cells,box))[1]
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
<ImageData WholeExtent="0 10 0 10 0 10" Origin="0 0 0" Spacing="8e-7 5.000000000000001e-7 4e-7" Direction="1 0 0 0 1 0 0 0 1">
|
||||
<FieldData>
|
||||
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
|
||||
AQAAAACAAAA+AAAAQQAAAA==eF5LScxNLM7Wc0/Nz9UrTk7MSVUos7TUAyNdSyDQLagsSS0uUdAwMjC01DU01DUwUjA0tDK1sDIw0GQAAFYKEKs=
|
||||
AQAAAACAAAA+AAAAQQAAAA==eF5LScxNLM7Wcy/KTNErTk7MSVUos7TUAyNdSyDQLagsSS0uUdAwMjC01DU01DUwUjA0tDK1sDIw0GQAAFW2EKk=
|
||||
</Array>
|
||||
</FieldData>
|
||||
<Piece Extent="0 10 0 10 0 10">
|
||||
|
@ -11,7 +11,7 @@
|
|||
</PointData>
|
||||
<CellData>
|
||||
<DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="41">
|
||||
AQAAAACAAABAHwAA+QAAAA==eF7t2DcSAjEQRFF28d57t3i4/wUJaCVdpYCqH46Sl/1oklZR+70iDMMwDP+wlHXZMJuyJdtmR3Yl3evJvhyYQzmSY3Mip5LuzeRcLsylXMm1uZFbSfd2ci8P5lGe5Nms5EXSvau8ybv5kE/5Mt/yI+kefc90j75nukffM92j75nu0fdM9+h7pnv0PdM9+p7pHn3PdI++Z7pXhmEYhmEYhqi5fyzfD74bfD+k3UD3cjvE94PvBt8PaTfQvdwO8f3gu8H3Q9oNdC+3Q3w/+G7w/VBJupfbIb4ffDf4fki7ge7R90z36Hume/Q90z36nukefc907wt6sixX
|
||||
AQAAAACAAABAHwAACgEAAA==eF7t1zcSAjEQRFEW7723i4f7X5CAVtJVCqB+OEpe9qMJWkXl+4owDMMw/MGqrMm62ZBN2TLbsiPpXlf2ZN8cyKEcmWM5kXRvKmdybi7kUq7MtdxIureVO7k3D/IoT2Ypz5LuXeRV3sy7fMin+ZJvSffoe6Z79D3TPfqe6R59z3SPvme6R98z3aPvme7R90z36Hume/Q9071qGIZhGP5h7p/u+8h3ke+jtIvoXm5n+T7yXeT7KO0iupfbWb6PfBf5Pkq7iO7ldpbvI99Fvo9KSfdyO8v3ke8i30dpF9E9+p7pHn3PdI++Z7pH3zPdo++Z7tH3TPfoe6Z79D3TPfqe6R59z3TvAxSdM5E=
|
||||
</DataArray>
|
||||
</CellData>
|
||||
</Piece>
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
<ImageData WholeExtent="0 10 0 11 0 10" Origin="0 0 0" Spacing="8e-7 4.5454545454545457e-7 4e-7" Direction="1 0 0 0 1 0 0 0 1">
|
||||
<FieldData>
|
||||
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
|
||||
AQAAAACAAAA+AAAAQQAAAA==eF5LScxNLM7Wc0/Nz9UrTk7MSVUos7TUAyNdSyDQLagsSS0uUdAwMjC01DU01DUwUjA0tDK1sDIw0GQAAFYKEKs=
|
||||
AQAAAACAAAA+AAAAQQAAAA==eF5LScxNLM7Wcy/KTNErTk7MSVUos7TUAyNdSyDQLagsSS0uUdAwMjC01DU01DUwUjA0tDK1sDIw0GQAAFW2EKk=
|
||||
</Array>
|
||||
</FieldData>
|
||||
<Piece Extent="0 10 0 11 0 10">
|
||||
|
@ -11,7 +11,7 @@
|
|||
</PointData>
|
||||
<CellData>
|
||||
<DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="41">
|
||||
AQAAAACAAABgIgAA/gAAAA==eF7t2CcOA0EQRFHnnHPO8f4XNHAtKWmQPxhZveSxj6ZBbbn0/cphGIZh+EdWZFXWzLpsyKbZkm1J9zqyK3tmXw7k0BzJsaR7EzmVM3MuF3JpruRa5t7byK3cmXt5kEfzJM+S7l3kVd7Mu3zIp/mSb0n36Puge/R90D36Pefeo++D7tH3Qffo+6B79H3QPfo9596j74Pu0fdB9yphGIZhGIZh+IOp/5S+v3x3+f4qdhfdS+0431++u3x/FbuL7qV2nO8l30m+l4qdlHsvteN8f/nu8v11knQvteN8f/nu8v1V7C66R98H3aPvg+7R7zn3Hn0fdI++D7r3AZqNMMY=
|
||||
AQAAAACAAABgIgAAEAEAAA==eF7t2DcOAkEQRFG8996zeLj/BQmoTUqa7Acj1Ju87EfTUmmrld9XDcMwDMM/sibrsmE2ZUu2zY7sSrrXk305MIdyJMfmRE4l3ZvJuVyYS7mSa3MjtzL33k7u5cE8ypM8m4W8SLp3lTd5Nx/yKV/mW34k3aPvg+7R90H36Pece4++D7pH3wfdo++D7tH3Qffo95x7j74PukffB92rhWEYhuEfmvpv4nvQd6DvwXIH0r3UrvQ96DvQ92C5A+lealf6fvPd5vut3G2591K70veg70Dfg4Wke6ld6XvQd6DvwXIH0j36PugefR90j37Puffo+6B79H3QPfo+6B59H3SPfs+59+j7oHv0fdC9L3s9OLk=
|
||||
</DataArray>
|
||||
</CellData>
|
||||
</Piece>
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
<ImageData WholeExtent="0 10 0 13 0 10" Origin="0 0 0" Spacing="8e-7 3.8461538461538463e-7 4e-7" Direction="1 0 0 0 1 0 0 0 1">
|
||||
<FieldData>
|
||||
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
|
||||
AQAAAACAAAA+AAAAQQAAAA==eF5LScxNLM7Wc0/Nz9UrTk7MSVUos7TUAyNdSyDQLagsSS0uUdAwMjC01DU01DUwUjA0tDK1sDIw0GQAAFYKEKs=
|
||||
AQAAAACAAAA+AAAAQQAAAA==eF5LScxNLM7Wcy/KTNErTk7MSVUos7TUAyNdSyDQLagsSS0uUdAwMjC01DU01DUwUjA0tDK1sDIw0GQAAFW2EKk=
|
||||
</Array>
|
||||
</FieldData>
|
||||
<Piece Extent="0 10 0 13 0 10">
|
||||
|
@ -11,7 +11,7 @@
|
|||
</PointData>
|
||||
<CellData>
|
||||
<DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="41">
|
||||
AQAAAACAAACgKAAACQEAAA==eF7t2blWAlEURFEBlcGJQcAZZBD4/x804HRSa72sghtUJzs72Q3qde/m+vVijDHGGLGPA7wV7/Aeh+IIx+juTfABH8UnfMYXcYozrN6b4wJfxSWucC2+4TtW733gJ36J3/iDG3GLv1i9t8M9HsQj/uFJPOMF3T33/bp77nur3nPfW/We+96q99z36+6579fdc99b9Z773qr33PdWvee+X3evH2OMMcYYY4wNW/8ZdP/r7tf93+1+d6/1jqB7XXe67vVup1fvtd4RdK/rTte93u306r3WO4Ludd3pute3WL3XekfQ/a+7X/d/t/vdPff9unvue6vec99b9Z773qr33Pfr7v0DeUA5pA==
|
||||
AQAAAACAAACgKAAAFwEAAA==eF7t2DduA1EUQ1ErWcHK0co57X+DKsRpCPyOBQtOc7rbEXh/aj/frxZjjDHGCOuwAZtkC/7CNtmBXeje68E/2CcHcAhH5BhOoLo3hTM4JxdwCVfkP1xD994GbuGO3MMDPJIneIbq3gVe4Y28wwd8ki/4hu499d7ce+r9qnvqvbn31PtV99R7c++p9+beU+9X3VPvzb2n3q+6p96be68eY4wxxkiW/ivyfc53Od/n1V3u3iu9G/je5zuf7/3qzlf3Su8Gvs/5Luf7vLrL3XuldwPf+3zn871/gupe6d3A9znf5XyfV3e5e0+9N/eeer/qnnpv7j31ftU99d7ce+q9uffU+1X31Htz76n3q+6p9+be+wA2m0MJ
|
||||
</DataArray>
|
||||
</CellData>
|
||||
</Piece>
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
<ImageData WholeExtent="0 10 0 20 0 2" Origin="0 0 0" Spacing="8e-7 2.5000000000000004e-7 0.000002" Direction="1 0 0 0 1 0 0 0 1">
|
||||
<FieldData>
|
||||
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
|
||||
AQAAAACAAAA+AAAAQQAAAA==eF5LScxNLM7Wc0/Nz9UrTk7MSVUos7TUAyNdSyDQLagsSS0uUdAwMjC01DU01DUwUjA0tDK1sDIw0GQAAFYKEKs=
|
||||
AQAAAACAAAA+AAAAQQAAAA==eF5LScxNLM7Wcy/KTNErTk7MSVUos7TUAyNdSyDQLagsSS0uUdAwMjC01DU01DUwUjA0tDK1sDIw0GQAAFW2EKk=
|
||||
</Array>
|
||||
</FieldData>
|
||||
<Piece Extent="0 10 0 20 0 2">
|
||||
|
@ -11,7 +11,7 @@
|
|||
</PointData>
|
||||
<CellData>
|
||||
<DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="40">
|
||||
AQAAAACAAACADAAAdgAAAA==eF7tzMsWgQAYReEuKJUoRKGLS3n/JzSwJ51ZRq3l35Nvtl3nm2uapmmaP+ihLy5wiSsxwBDn/ltjhLGY4AZTcYs7tN/Yqb8Mc9yLBzxiIZ7wjP/2K7HCi3jFG9Zigy3ab+zUX4d3fIhPfGEvDvjGuf8+MEUQzQ==
|
||||
AQAAAACAAACADAAAbQAAAA==eF7tzDcCggAQBVGiooCYQcFM8P4ntGCqX9ruTvO6CYO50HVd13X/MMJYTDDFhbjEDK39VrjGXCywxI1Y4Rat/Xa4x4N4xBOexRobtPa74BVbscMb3sUHPtHa74Vv/Ig9DjiKE37R2u8H6ycQzQ==
|
||||
</DataArray>
|
||||
</CellData>
|
||||
</Piece>
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
<ImageData WholeExtent="0 5 0 4 0 20" Origin="0 0 0" Spacing="0.0000016 0.00000125 2e-7" Direction="1 0 0 0 1 0 0 0 1">
|
||||
<FieldData>
|
||||
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
|
||||
AQAAAACAAAA+AAAAQQAAAA==eF5LScxNLM7Wc0/Nz9UrTk7MSVUos7TUAyNdSyDQLagsSS0uUdAwMjC01DU01DUwUjA0tDK1sDIw0GQAAFYKEKs=
|
||||
AQAAAACAAAA+AAAAQQAAAA==eF5LScxNLM7Wcy/KTNErTk7MSVUos7TUAyNdSyDQLagsSS0uUdAwMjC01DU01DUwUjA0tDK1sDIw0GQAAFW2EKk=
|
||||
</Array>
|
||||
</FieldData>
|
||||
<Piece Extent="0 5 0 4 0 20">
|
||||
|
@ -11,7 +11,7 @@
|
|||
</PointData>
|
||||
<CellData>
|
||||
<DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="41">
|
||||
AQAAAACAAACADAAAeAAAAA==eF7t1TkWggAUQ1EREZS5BFQmB9j/Bin++40b8OBJmtumSoKDJZDyBx7xhGeM8YJXzLDAEmts8YYP7HHECZ/4xg+uqH4W9bOon+W7n5Ryf/oPhxih70yCvjMp5ug7U2GDHd7Rd2ZA35kZX+g7s6D6Wf613wZ8oBHR
|
||||
AQAAAACAAACADAAAeAAAAA==eF7t1bkWglAUQ1GfiICAQMngwKTy/z9occ+t6LVJmt2myUo4WIKUcucRTxhjghlesMASK2ywwwFv+MARJ1xwxTduqH4W9bP8q5+Ucq//SIS+4zOm6DvO0Xd8xRpb7NF3fMcn+o5n9B2/8IPqZ1E/y6/7fQE+LBGB
|
||||
</DataArray>
|
||||
</CellData>
|
||||
</Piece>
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
<ImageData WholeExtent="0 8 0 10 0 12" Origin="0 0 0" Spacing="0.000001 5.000000000000001e-7 3.333333333333333e-7" Direction="1 0 0 0 1 0 0 0 1">
|
||||
<FieldData>
|
||||
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
|
||||
AQAAAACAAAA+AAAAQQAAAA==eF5LScxNLM7Wc0/Nz9UrTk7MSVUos7TUAyNdSyDQLagsSS0uUdAwMjC01DU01DUwUjA0tDK1sDIw0GQAAFYKEKs=
|
||||
AQAAAACAAAA+AAAAQQAAAA==eF5LScxNLM7Wcy/KTNErTk7MSVUos7TUAyNdSyDQLagsSS0uUdAwMjC01DU01DUwUjA0tDK1sDIw0GQAAFW2EKk=
|
||||
</Array>
|
||||
</FieldData>
|
||||
<Piece Extent="0 8 0 10 0 12">
|
||||
|
@ -11,7 +11,7 @@
|
|||
</PointData>
|
||||
<CellData>
|
||||
<DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="41">
|
||||
AQAAAACAAAAAHgAAyAAAAA==eF7t2LcBAkEUxFDu8N5776H/BglQBwpvNnmRskn+FrX/K2KMsWKWWMcGNrGFbexgF23fwz4OcIgjHOMEp2j7Gc5xgUtc4Ro3uEXb73CPBzziCc94wSva/oZ3fOATX/jGD37R9nY/trf7sb3dj+3tfmxv92N7ux/b2/3Y3u7H9nY/trf7sb3dj+3tfmxv92N7ux/b2/3YvowxxhhjjJXS/gPa3t4htrd3iO3tHWJ7e4fY3u7H9nY/trf7sb3dj+3tfmz/A1V7KtE=
|
||||
AQAAAACAAAAAHgAAyQAAAA==eF7t17cRw0AUxFCR8t5776X+G1QgdIAZRnvJi5Bt8K+o/V8RY4wxxsossY4NbGIL29jBLtq+h30c4BBHOMYJTtH2M5zjApe4wjVucIu23+EeD3jEE57xgle0/Q3v+MAnvvCNH/yi7e1+bG/3Y3u7H9vb/dje7sf2dj+2t/uxvd2P7e1+bG/3Y/syxhhjjJVr/8G2t3eg7e0daHt7B9re3oG2t/uxvd2P7e1+bG/3Y3u7H9vb/dje7sf2dj+2t/uxvd2P7X9ILyox
|
||||
</DataArray>
|
||||
</CellData>
|
||||
</Piece>
|
||||
|
|
|
@ -212,6 +212,14 @@ class TestGrid:
|
|||
assert default == modified.renumber()
|
||||
|
||||
|
||||
def test_assemble(self):
|
||||
cells = np.random.randint(8,16,3)
|
||||
N = cells.prod()
|
||||
g = Grid(np.arange(N).reshape(cells),np.ones(3))
|
||||
idx = np.random.randint(0,N,N).reshape(cells)
|
||||
assert (idx == g.assemble(idx).material).all
|
||||
|
||||
|
||||
def test_substitute(self,default):
|
||||
offset = np.random.randint(1,500)
|
||||
modified = Grid(default.material + offset,
|
||||
|
|
|
@ -144,16 +144,15 @@ class TestGridFilters:
|
|||
def test_regrid_identity(self):
|
||||
size = np.random.random(3) # noqa
|
||||
cells = np.random.randint(8,32,(3))
|
||||
F = np.broadcast_to(np.eye(3), tuple(cells)+(3,3))
|
||||
assert all(grid_filters.regrid(size,F,cells) == np.arange(cells.prod()))
|
||||
F = np.broadcast_to(np.eye(3), (*cells,3,3))
|
||||
assert (grid_filters.regrid(size,F,cells).flatten() == np.arange(cells.prod())).all
|
||||
|
||||
def test_regrid_double_cells(self):
|
||||
size = np.random.random(3) # noqa
|
||||
cells = np.random.randint(8,32,(3))
|
||||
g = Grid.from_Voronoi_tessellation(cells,size,seeds.from_random(size,10))
|
||||
F = np.broadcast_to(np.eye(3), tuple(cells)+(3,3))
|
||||
assert all(g.scale(cells*2).material.flatten() ==
|
||||
g.material.flatten()[grid_filters.regrid(size,F,cells*2)])
|
||||
F = np.broadcast_to(np.eye(3), (*cells,3,3))
|
||||
assert g.scale(cells*2) == g.assemble(grid_filters.regrid(size,F,cells*2))
|
||||
|
||||
@pytest.mark.parametrize('differential_operator',[grid_filters.curl,
|
||||
grid_filters.divergence,
|
||||
|
@ -319,7 +318,6 @@ class TestGridFilters:
|
|||
]
|
||||
|
||||
@pytest.mark.parametrize('field_def,div_def',div_test_data)
|
||||
|
||||
def test_div(self,field_def,div_def):
|
||||
size = np.random.random(3)+1.0
|
||||
cells = np.random.randint(8,32,(3))
|
||||
|
@ -336,3 +334,31 @@ class TestGridFilters:
|
|||
div=div.reshape(tuple(cells))
|
||||
|
||||
assert np.allclose(div,grid_filters.divergence(size,field))
|
||||
|
||||
|
||||
def test_ravel_index(self):
|
||||
cells = np.random.randint(8,32,(3))
|
||||
|
||||
indices = np.block(np.meshgrid(np.arange(cells[0]),
|
||||
np.arange(cells[1]),
|
||||
np.arange(cells[2]),indexing='ij')).reshape(tuple(cells)+(3,),order='F')
|
||||
x,y,z = map(np.random.randint,cells)
|
||||
assert grid_filters.ravel_index(indices)[x,y,z] == np.arange(0,np.product(cells)).reshape(cells,order='F')[x,y,z]
|
||||
|
||||
def test_unravel_index(self):
|
||||
cells = np.random.randint(8,32,(3))
|
||||
indices = np.arange(np.prod(cells)).reshape(cells,order='F')
|
||||
x,y,z = map(np.random.randint,cells)
|
||||
assert np.all(grid_filters.unravel_index(indices)[x,y,z] == [x,y,z])
|
||||
|
||||
def test_ravel_unravel_index(self):
|
||||
cells = np.random.randint(8,32,(3))
|
||||
indices = np.random.randint(0,np.prod(cells),cells).reshape(cells)
|
||||
assert np.all(indices==grid_filters.ravel_index(grid_filters.unravel_index(indices)))
|
||||
|
||||
def test_unravel_ravel_index(self):
|
||||
cells = np.hstack([np.random.randint(8,32,(3)),1])
|
||||
indices = np.block([np.random.randint(0,cells[0],cells),
|
||||
np.random.randint(0,cells[1],cells),
|
||||
np.random.randint(0,cells[2],cells)])
|
||||
assert np.all(indices==grid_filters.unravel_index(grid_filters.ravel_index(indices)))
|
||||
|
|
Loading…
Reference in New Issue