bug fixes and more optimizations
This commit is contained in:
parent
8f146ad385
commit
930e605afc
|
@ -27,52 +27,73 @@ class extendedOption(Option):
|
|||
|
||||
def grainCoarsenLocal(microLocal,ix,iy,iz,window):
|
||||
interfacialEnergy = lambda A,B: 1.0
|
||||
winner = numpy.zeros(microLocal.shape).astype(int)
|
||||
winner = numpy.where(numpy.reshape(numpy.in1d(microLocal,options.black),microLocal.shape),
|
||||
struc = ndimage.generate_binary_structure(3,3)
|
||||
winner = numpy.where(numpy.in1d(microLocal,options.black).reshape(microLocal.shape),
|
||||
microLocal,0) # zero out non-blacklisted microstructures
|
||||
diffusedMax = (winner > 0).astype(float) # concentration of immutable microstructures
|
||||
boundingSlice = ndimage.measurements.find_objects(microLocal) # bounding boxes of each distinct microstructure region
|
||||
for grain in set(numpy.unique(microLocal)) - set(options.black) - (set([0])): # diffuse all microstructures except immutable ones
|
||||
diffused = {}
|
||||
for grain in set(numpy.unique(microLocal)) - set(options.black) - (set([0])): # all microstructures except immutable ones
|
||||
mini = [max(0, boundingSlice[grain-1][i].start - window) for i in range(3)] # upper right of expanded bounding box
|
||||
maxi = [min(microLocal.shape[i], boundingSlice[grain-1][i].stop + window) for i in range(3)] # lower left of expanded bounding box
|
||||
microWindow = microLocal[mini[0]:maxi[0],mini[1]:maxi[1],mini[2]:maxi[2]]
|
||||
neighbours = set(numpy.unique(ndimage.morphology.binary_dilation(microWindow==grain,\
|
||||
structure=ndimage.generate_binary_structure(3,3))))\
|
||||
grainCharFunc = microWindow==grain
|
||||
neighbours = set(numpy.unique(microWindow[ndimage.morphology.binary_dilation(grainCharFunc,structure=struc)]))\
|
||||
- set([grain]) - set(options.black) # who is on my boundary?
|
||||
if len(neighbours) == 0: # no neighbours
|
||||
diffused = numpy.ones(microWindow.shape)
|
||||
elif len(neighbours) == 1: # 1 neighbour
|
||||
speed = interfacialEnergy(grain,neighbours.pop()) # speed proportional to interfacial energy between me and only neighbour
|
||||
diffused = ndimage.filters.gaussian_filter((microWindow==grain).astype(float),speed*options.d)# diffuse microstructure inside extended bounding box
|
||||
else: # more than 1 neighbour ie junctions
|
||||
try: # has grain been diffused previously?
|
||||
diff = diffused[grain].copy() # yes: use previously diffused grain
|
||||
except:
|
||||
diffused[grain] = ndimage.filters.gaussian_filter((grainCharFunc).astype(float),options.d) # no: diffuse grain with unit speed
|
||||
diff = diffused[grain].copy()
|
||||
if len(neighbours) == 1:
|
||||
speed = interfacialEnergy(grain,neighbours.pop()) # speed proportional to interfacial energy between me and neighbour
|
||||
diff = speed*diff + (1.-speed)*(grainCharFunc) # rescale diffused microstructure by speed
|
||||
else:
|
||||
tiny = 0.001
|
||||
numerator = numpy.zeros(microWindow.shape)
|
||||
denominator = numpy.zeros(microWindow.shape)
|
||||
diffused = ndimage.filters.gaussian_filter((microWindow==grain).astype(float),options.d) # diffuse microstructure inside extended bounding box
|
||||
weights = {}
|
||||
weights[grain] = diffused
|
||||
weights = {grain: diff + tiny}
|
||||
for i in neighbours:
|
||||
weights[i] = ndimage.filters.gaussian_filter((microWindow==i).astype(float),options.d) # partition of unity around me
|
||||
for grainA,grainB in itertools.combinations(neighbours,2): # combinations of triple junctions possible
|
||||
miniI = [max(0, boundingSlice[i-1][j].start - window) for j in range(3)] # bounding box of neighbour
|
||||
maxiI = [min(microLocal.shape[j], boundingSlice[i-1][j].stop + window) for j in range(3)]
|
||||
miniCommon = [max(mini[j], boundingSlice[i-1][j].start - window) for j in range(3)] # intersection of mine and neighbouring bounding box
|
||||
maxiCommon = [min(maxi[j], boundingSlice[i-1][j].stop + window) for j in range(3)]
|
||||
weights[i] = tiny*numpy.ones(microWindow.shape)
|
||||
try: # has neighbouring grain been diffused previously?
|
||||
weights[i][miniCommon[0] - mini[0]:maxiCommon[0] - mini[0],\
|
||||
miniCommon[1] - mini[1]:maxiCommon[1] - mini[1],\
|
||||
miniCommon[2] - mini[2]:maxiCommon[2] - mini[2]] = diffused[i][miniCommon[0] - miniI[0]:maxiCommon[0] - miniI[0],\
|
||||
miniCommon[1] - miniI[1]:maxiCommon[1] - miniI[1],\
|
||||
miniCommon[2] - miniI[2]:maxiCommon[2] - miniI[2]] + tiny
|
||||
except: # no: diffuse neighbouring grain with unit speed
|
||||
diffused[i] = ndimage.filters.gaussian_filter((microLocal[miniI[0]:maxiI[0],\
|
||||
miniI[1]:maxiI[1],\
|
||||
miniI[2]:maxiI[2]]==i).astype(float),options.d)
|
||||
weights[i][miniCommon[0] - mini[0]:maxiCommon[0] - mini[0],\
|
||||
miniCommon[1] - mini[1]:maxiCommon[1] - mini[1],\
|
||||
miniCommon[2] - mini[2]:maxiCommon[2] - mini[2]] = diffused[i][miniCommon[0] - miniI[0]:maxiCommon[0] - miniI[0],\
|
||||
miniCommon[1] - miniI[1]:maxiCommon[1] - miniI[1],\
|
||||
miniCommon[2] - miniI[2]:maxiCommon[2] - miniI[2]] + tiny
|
||||
for grainA,grainB in itertools.combinations(neighbours,2): # combinations of possible triple junctions
|
||||
speed = interfacialEnergy(grain,grainA) +\
|
||||
interfacialEnergy(grain,grainB) -\
|
||||
interfacialEnergy(grainA,grainB) # speed of the triple junction
|
||||
weight = weights[grain] + weights[grainA] + weights[grainB]
|
||||
numerator += weight*(speed*diffused + (1.-speed)*(microWindow==grain))
|
||||
weight = weights[grainA] * weights[grainB]
|
||||
if numpy.any(weight > 0.01): # strongly interacting triple junction?
|
||||
weight *= weights[grain]
|
||||
numerator += weight*(speed*diff + (1.-speed)*(grainCharFunc))
|
||||
denominator += weight
|
||||
|
||||
diffused = (numerator)/(denominator+1e-30)
|
||||
diff = numerator/denominator # weighted sum of strongly interacting triple junctions
|
||||
|
||||
isMax = diffused > diffusedMax[mini[0]:maxi[0],\
|
||||
mini[1]:maxi[1],\
|
||||
mini[2]:maxi[2]] # me at highest concentration?
|
||||
winner[mini[0]:maxi[0],\
|
||||
mini[1]:maxi[1],\
|
||||
mini[2]:maxi[2]][isMax] = grain # remember me ...
|
||||
mini[2]:maxi[2]][diff > diffusedMax[mini[0]:maxi[0],\
|
||||
mini[1]:maxi[1],\
|
||||
mini[2]:maxi[2]]] = grain # remember me ...
|
||||
diffusedMax[mini[0]:maxi[0],\
|
||||
mini[1]:maxi[1],\
|
||||
mini[2]:maxi[2]] = numpy.where(isMax,\
|
||||
diffused,\
|
||||
diffusedMax[mini[0]:maxi[0],\
|
||||
mini[2]:maxi[2]] = numpy.maximum(diff,diffusedMax[mini[0]:maxi[0],\
|
||||
mini[1]:maxi[1],\
|
||||
mini[2]:maxi[2]]) # ... and my concentration
|
||||
|
||||
|
|
Loading…
Reference in New Issue