From 930e605afc03c063dc0b2352f5e516bf8565a5f2 Mon Sep 17 00:00:00 2001
From: Pratheek Shanthraj
Date: Wed, 3 Jul 2013 00:48:21 +0000
Subject: [PATCH] bug fixes and more optimizations
---
processing/pre/geom_grainGrowth.py | 81 +++++++++++++++++++-----------
1 file changed, 51 insertions(+), 30 deletions(-)
diff --git a/processing/pre/geom_grainGrowth.py b/processing/pre/geom_grainGrowth.py
index 186fc21c6..dd25528e1 100755
--- a/processing/pre/geom_grainGrowth.py
+++ b/processing/pre/geom_grainGrowth.py
@@ -27,54 +27,75 @@ class extendedOption(Option):
def grainCoarsenLocal(microLocal,ix,iy,iz,window):
interfacialEnergy = lambda A,B: 1.0
- winner = numpy.zeros(microLocal.shape).astype(int)
- winner = numpy.where(numpy.reshape(numpy.in1d(microLocal,options.black),microLocal.shape),
+ struc = ndimage.generate_binary_structure(3,3)
+ winner = numpy.where(numpy.in1d(microLocal,options.black).reshape(microLocal.shape),
microLocal,0) # zero out non-blacklisted microstructures
diffusedMax = (winner > 0).astype(float) # concentration of immutable microstructures
boundingSlice = ndimage.measurements.find_objects(microLocal) # bounding boxes of each distinct microstructure region
- for grain in set(numpy.unique(microLocal)) - set(options.black) - (set([0])): # diffuse all microstructures except immutable ones
+ diffused = {}
+ for grain in set(numpy.unique(microLocal)) - set(options.black) - (set([0])): # all microstructures except immutable ones
mini = [max(0, boundingSlice[grain-1][i].start - window) for i in range(3)] # upper right of expanded bounding box
maxi = [min(microLocal.shape[i], boundingSlice[grain-1][i].stop + window) for i in range(3)] # lower left of expanded bounding box
microWindow = microLocal[mini[0]:maxi[0],mini[1]:maxi[1],mini[2]:maxi[2]]
- neighbours = set(numpy.unique(ndimage.morphology.binary_dilation(microWindow==grain,\
- structure=ndimage.generate_binary_structure(3,3))))\
- - set([grain]) - set(options.black) # who is on my boundary?
- if len(neighbours) == 0: # no neighbours
- diffused = numpy.ones(microWindow.shape)
- elif len(neighbours) == 1: # 1 neighbour
- speed = interfacialEnergy(grain,neighbours.pop()) # speed proportional to interfacial energy between me and only neighbour
- diffused = ndimage.filters.gaussian_filter((microWindow==grain).astype(float),speed*options.d)# diffuse microstructure inside extended bounding box
- else: # more than 1 neighbour ie junctions
+ grainCharFunc = microWindow==grain
+ neighbours = set(numpy.unique(microWindow[ndimage.morphology.binary_dilation(grainCharFunc,structure=struc)]))\
+ - set([grain]) - set(options.black) # who is on my boundary?
+ try: # has grain been diffused previously?
+ diff = diffused[grain].copy() # yes: use previously diffused grain
+ except:
+ diffused[grain] = ndimage.filters.gaussian_filter((grainCharFunc).astype(float),options.d) # no: diffuse grain with unit speed
+ diff = diffused[grain].copy()
+ if len(neighbours) == 1:
+ speed = interfacialEnergy(grain,neighbours.pop()) # speed proportional to interfacial energy between me and neighbour
+ diff = speed*diff + (1.-speed)*(grainCharFunc) # rescale diffused microstructure by speed
+ else:
+ tiny = 0.001
numerator = numpy.zeros(microWindow.shape)
denominator = numpy.zeros(microWindow.shape)
- diffused = ndimage.filters.gaussian_filter((microWindow==grain).astype(float),options.d) # diffuse microstructure inside extended bounding box
- weights = {}
- weights[grain] = diffused
+ weights = {grain: diff + tiny}
for i in neighbours:
- weights[i] = ndimage.filters.gaussian_filter((microWindow==i).astype(float),options.d) # partition of unity around me
- for grainA,grainB in itertools.combinations(neighbours,2): # combinations of triple junctions possible
+ miniI = [max(0, boundingSlice[i-1][j].start - window) for j in range(3)] # bounding box of neighbour
+ maxiI = [min(microLocal.shape[j], boundingSlice[i-1][j].stop + window) for j in range(3)]
+ miniCommon = [max(mini[j], boundingSlice[i-1][j].start - window) for j in range(3)] # intersection of mine and neighbouring bounding box
+ maxiCommon = [min(maxi[j], boundingSlice[i-1][j].stop + window) for j in range(3)]
+ weights[i] = tiny*numpy.ones(microWindow.shape)
+ try: # has neighbouring grain been diffused previously?
+ weights[i][miniCommon[0] - mini[0]:maxiCommon[0] - mini[0],\
+ miniCommon[1] - mini[1]:maxiCommon[1] - mini[1],\
+ miniCommon[2] - mini[2]:maxiCommon[2] - mini[2]] = diffused[i][miniCommon[0] - miniI[0]:maxiCommon[0] - miniI[0],\
+ miniCommon[1] - miniI[1]:maxiCommon[1] - miniI[1],\
+ miniCommon[2] - miniI[2]:maxiCommon[2] - miniI[2]] + tiny
+ except: # no: diffuse neighbouring grain with unit speed
+ diffused[i] = ndimage.filters.gaussian_filter((microLocal[miniI[0]:maxiI[0],\
+ miniI[1]:maxiI[1],\
+ miniI[2]:maxiI[2]]==i).astype(float),options.d)
+ weights[i][miniCommon[0] - mini[0]:maxiCommon[0] - mini[0],\
+ miniCommon[1] - mini[1]:maxiCommon[1] - mini[1],\
+ miniCommon[2] - mini[2]:maxiCommon[2] - mini[2]] = diffused[i][miniCommon[0] - miniI[0]:maxiCommon[0] - miniI[0],\
+ miniCommon[1] - miniI[1]:maxiCommon[1] - miniI[1],\
+ miniCommon[2] - miniI[2]:maxiCommon[2] - miniI[2]] + tiny
+ for grainA,grainB in itertools.combinations(neighbours,2): # combinations of possible triple junctions
speed = interfacialEnergy(grain,grainA) +\
interfacialEnergy(grain,grainB) -\
interfacialEnergy(grainA,grainB) # speed of the triple junction
- weight = weights[grain] + weights[grainA] + weights[grainB]
- numerator += weight*(speed*diffused + (1.-speed)*(microWindow==grain))
- denominator += weight
+ weight = weights[grainA] * weights[grainB]
+ if numpy.any(weight > 0.01): # strongly interacting triple junction?
+ weight *= weights[grain]
+ numerator += weight*(speed*diff + (1.-speed)*(grainCharFunc))
+ denominator += weight
- diffused = (numerator)/(denominator+1e-30)
+ diff = numerator/denominator # weighted sum of strongly interacting triple junctions
- isMax = diffused > diffusedMax[mini[0]:maxi[0],\
- mini[1]:maxi[1],\
- mini[2]:maxi[2]] # me at highest concentration?
winner[mini[0]:maxi[0],\
mini[1]:maxi[1],\
- mini[2]:maxi[2]][isMax] = grain # remember me ...
+ mini[2]:maxi[2]][diff > diffusedMax[mini[0]:maxi[0],\
+ mini[1]:maxi[1],\
+ mini[2]:maxi[2]]] = grain # remember me ...
diffusedMax[mini[0]:maxi[0],\
mini[1]:maxi[1],\
- mini[2]:maxi[2]] = numpy.where(isMax,\
- diffused,\
- diffusedMax[mini[0]:maxi[0],\
- mini[1]:maxi[1],\
- mini[2]:maxi[2]]) # ... and my concentration
+ mini[2]:maxi[2]] = numpy.maximum(diff,diffusedMax[mini[0]:maxi[0],\
+ mini[1]:maxi[1],\
+ mini[2]:maxi[2]]) # ... and my concentration
return [winner[window:-window,window:-window,window:-window],ix,iy,iz]