polishing

This commit is contained in:
Martin Diehl 2020-07-24 23:40:42 +02:00
parent 3ed1850d68
commit 86bef605e3
2 changed files with 8 additions and 11 deletions

View File

@ -588,7 +588,7 @@ module subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,T,instance,of)
shearBandingContribution: if(dNeq0(prm%sbVelocity)) then shearBandingContribution: if(dNeq0(prm%sbVelocity)) then
BoltzmannRatio = prm%E_sb/(kB*T) BoltzmannRatio = prm%E_sb/(kB*T)
call math_eigh33(Mp,eigValues,eigVectors) ! is Mp symmetric by design? call math_eigh33(eigValues,eigVectors,Mp) ! is Mp symmetric by design?
do i = 1,6 do i = 1,6
P_sb = 0.5_pReal * math_outer(matmul(eigVectors,sb_sComposition(1:3,i)),& P_sb = 0.5_pReal * math_outer(matmul(eigVectors,sb_sComposition(1:3,i)),&

View File

@ -877,15 +877,14 @@ end function math_sampleGaussVar
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief eigenvalues and eigenvectors of symmetric matrix !> @brief eigenvalues and eigenvectors of symmetric matrix
! ToDo: has wrong oder of arguments
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine math_eigh(m,w,v,error) subroutine math_eigh(w,v,error,m)
real(pReal), dimension(:,:), intent(in) :: m !< quadratic matrix to compute eigenvectors and values of real(pReal), dimension(:,:), intent(in) :: m !< quadratic matrix to compute eigenvectors and values of
real(pReal), dimension(size(m,1)), intent(out) :: w !< eigenvalues real(pReal), dimension(size(m,1)), intent(out) :: w !< eigenvalues
real(pReal), dimension(size(m,1),size(m,1)), intent(out) :: v !< eigenvectors real(pReal), dimension(size(m,1),size(m,1)), intent(out) :: v !< eigenvectors
logical, intent(out) :: error logical, intent(out) :: error
integer :: ierr integer :: ierr
real(pReal), dimension(size(m,1)**2) :: work real(pReal), dimension(size(m,1)**2) :: work
@ -902,9 +901,8 @@ end subroutine math_eigh
!> @author Joachim Kopp, Max-Planck-Institut für Kernphysik, Heidelberg (Copyright (C) 2006) !> @author Joachim Kopp, Max-Planck-Institut für Kernphysik, Heidelberg (Copyright (C) 2006)
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @details See http://arxiv.org/abs/physics/0610206 (DSYEVH3) !> @details See http://arxiv.org/abs/physics/0610206 (DSYEVH3)
! ToDo: has wrong oder of arguments
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine math_eigh33(m,w,v) subroutine math_eigh33(w,v,m)
real(pReal), dimension(3,3),intent(in) :: m !< 3x3 matrix to compute eigenvectors and values of real(pReal), dimension(3,3),intent(in) :: m !< 3x3 matrix to compute eigenvectors and values of
real(pReal), dimension(3), intent(out) :: w !< eigenvalues real(pReal), dimension(3), intent(out) :: w !< eigenvalues
@ -928,7 +926,7 @@ subroutine math_eigh33(m,w,v)
(m(1,1) - w(1)) * (m(2,2) - w(1)) - v(3,2)] (m(1,1) - w(1)) * (m(2,2) - w(1)) - v(3,2)]
norm = norm2(v(1:3, 1)) norm = norm2(v(1:3, 1))
fallback1: if(norm < threshold) then fallback1: if(norm < threshold) then
call math_eigh(m,w,v,error) call math_eigh(w,v,error,m)
else fallback1 else fallback1
v(1:3,1) = v(1:3, 1) / norm v(1:3,1) = v(1:3, 1) / norm
v(1:3,2) = [ v(1,2) + m(1, 3) * w(2), & v(1:3,2) = [ v(1,2) + m(1, 3) * w(2), &
@ -936,7 +934,7 @@ subroutine math_eigh33(m,w,v)
(m(1,1) - w(2)) * (m(2,2) - w(2)) - v(3,2)] (m(1,1) - w(2)) * (m(2,2) - w(2)) - v(3,2)]
norm = norm2(v(1:3, 2)) norm = norm2(v(1:3, 2))
fallback2: if(norm < threshold) then fallback2: if(norm < threshold) then
call math_eigh(m,w,v,error) call math_eigh(w,v,error,m)
else fallback2 else fallback2
v(1:3,2) = v(1:3, 2) / norm v(1:3,2) = v(1:3, 2) / norm
v(1:3,3) = math_cross(v(1:3,1),v(1:3,2)) v(1:3,3) = math_cross(v(1:3,1),v(1:3,2))
@ -966,7 +964,6 @@ pure function math_rotationalPart(F) result(R)
real(pReal), dimension(2) :: & real(pReal), dimension(2) :: &
I_F ! first two invariants of F I_F ! first two invariants of F
real(pReal) :: x,Phi real(pReal) :: x,Phi
integer :: i
C = matmul(transpose(F),F) C = matmul(transpose(F),F)
I_C = math_invariantsSym33(C) I_C = math_invariantsSym33(C)
@ -1041,7 +1038,7 @@ function math_eigvalsh33(m)
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
phi=acos(math_clip(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal)) phi=acos(math_clip(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
math_eigvalsh33 = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* & math_eigvalsh33 = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
[cos(phi/3.0_pReal), & [cos( phi /3.0_pReal), &
cos((phi+2.0_pReal*PI)/3.0_pReal), & cos((phi+2.0_pReal*PI)/3.0_pReal), &
cos((phi+4.0_pReal*PI)/3.0_pReal) & cos((phi+4.0_pReal*PI)/3.0_pReal) &
] & ] &