calculate R directly from F

no detour via inverse of U/V needed.
Determinant of R seems to deviate less from 1.0 with this version
This commit is contained in:
Martin Diehl 2020-07-24 23:08:05 +02:00
parent 0f2c0cf4b2
commit 3ed1850d68
1 changed files with 37 additions and 74 deletions

View File

@ -946,87 +946,50 @@ subroutine math_eigh33(m,w,v)
end subroutine math_eigh33
!--------------------------------------------------------------------------------------------------
!> @brief rotational part from polar decomposition of 3x3 tensor
!> @brief Calculate rotational part of a deformation gradient
!> @details https://www.jstor.org/stable/43637254
!! https://www.jstor.org/stable/43637372
!! https://doi.org/10.1023/A:1007407802076
!--------------------------------------------------------------------------------------------------
function math_rotationalPart(m)
pure function math_rotationalPart(F) result(R)
real(pReal), intent(in), dimension(3,3) :: m
real(pReal), dimension(3,3) :: math_rotationalPart
real(pReal), dimension(3,3) :: U , Uinv
real(pReal), dimension(3,3), intent(in) :: &
F ! deformation gradient
real(pReal), dimension(3,3) :: &
C, & ! right Cauchy-Green tensor
R ! rotational part
real(pReal), dimension(3) :: &
lambda, & ! principal stretches
I_C, & ! invariants of C
I_U ! invariants of U
real(pReal), dimension(2) :: &
I_F ! first two invariants of F
real(pReal) :: x,Phi
integer :: i
U = eigenvectorBasis(matmul(transpose(m),m))
Uinv = math_inv33(U)
C = matmul(transpose(F),F)
I_C = math_invariantsSym33(C)
I_F = [math_trace33(F), 0.5*(math_trace33(F)**2 - math_trace33(matmul(F,F)))]
inversionFailed: if (all(dEq0(Uinv))) then
math_rotationalPart = math_I3
call IO_warning(650)
else inversionFailed
math_rotationalPart = matmul(m,Uinv)
endif inversionFailed
x = math_clip(I_C(1)**2 -3.0_pReal*I_C(2),0.0_pReal)**(3.0_pReal/2.0_pReal)
if(dNeq0(x)) then
Phi = acos(math_clip((I_C(1)**3 -4.5_pReal*I_C(1)*I_C(2) +13.5_pReal*I_C(3))/x,-1.0_pReal,1.0_pReal))
lambda = I_C(1) +(2.0_pReal * sqrt(math_clip(I_C(1)**2-3.0_pReal*I_C(2),0.0_pReal))) &
*cos((Phi-2.0_pReal * PI*[1.0_pReal,2.0_pReal,3.0_pReal])/3.0_pReal)
lambda = sqrt(math_clip(lambda,0.0_pReal)/3.0_pReal)
else
lambda = sqrt(I_C(1)/3.0_pReal)
endif
contains
!--------------------------------------------------------------------------------------------------
!> @brief eigenvector basis of positive-definite 3x3 matrix
!--------------------------------------------------------------------------------------------------
pure function eigenvectorBasis(m)
I_U = [sum(lambda), lambda(1)*lambda(2)+lambda(2)*lambda(3)+lambda(3)*lambda(1), product(lambda)]
real(pReal), dimension(3,3) :: eigenvectorBasis
real(pReal), dimension(3,3), intent(in) :: m !< positive-definite matrix of which the basis is computed
real(pReal), dimension(3) :: I, v
real(pReal) :: P, Q, rho, phi
real(pReal), parameter :: TOL=1.e-14_pReal
real(pReal), dimension(3,3,3) :: N, EB
I = math_invariantsSym33(m)
P = I(2)-I(1)**2.0_pReal/3.0_pReal
Q = -2.0_pReal/27.0_pReal*I(1)**3.0_pReal+product(I(1:2))/3.0_pReal-I(3)
threeSimilarEigVals: if(all(abs([P,Q]) < TOL)) then
v = I(1)/3.0_pReal
! this is not really correct, but at least the basis is correct
EB = 0.0_pReal
EB(1,1,1)=1.0_pReal
EB(2,2,2)=1.0_pReal
EB(3,3,3)=1.0_pReal
else threeSimilarEigVals
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
phi=acos(math_clip(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
v = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* [cos((phi )/3.0_pReal), &
cos((phi+2.0_pReal*PI)/3.0_pReal), &
cos((phi+4.0_pReal*PI)/3.0_pReal) &
] + I(1)/3.0_pReal
N(1:3,1:3,1) = m-v(1)*math_I3
N(1:3,1:3,2) = m-v(2)*math_I3
N(1:3,1:3,3) = m-v(3)*math_I3
twoSimilarEigVals: if(abs(v(1)-v(2)) < TOL) then
EB(1:3,1:3,3) = matmul(N(1:3,1:3,1),N(1:3,1:3,2))/((v(3)-v(1))*(v(3)-v(2)))
EB(1:3,1:3,1) = math_I3-EB(1:3,1:3,3)
EB(1:3,1:3,2) = 0.0_pReal
elseif (abs(v(2)-v(3)) < TOL) then twoSimilarEigVals
EB(1:3,1:3,1) = matmul(N(1:3,1:3,2),N(1:3,1:3,3))/((v(1)-v(2))*(v(1)-v(3)))
EB(1:3,1:3,2) = math_I3-EB(1:3,1:3,1)
EB(1:3,1:3,3) = 0.0_pReal
elseif (abs(v(3)-v(1)) < TOL) then twoSimilarEigVals
EB(1:3,1:3,2) = matmul(N(1:3,1:3,3),N(1:3,1:3,1))/((v(2)-v(3))*(v(2)-v(1)))
EB(1:3,1:3,3) = math_I3-EB(1:3,1:3,2)
EB(1:3,1:3,1) = 0.0_pReal
else twoSimilarEigVals
EB(1:3,1:3,1) = matmul(N(1:3,1:3,2),N(1:3,1:3,3))/((v(1)-v(2))*(v(1)-v(3)))
EB(1:3,1:3,2) = matmul(N(1:3,1:3,3),N(1:3,1:3,1))/((v(2)-v(3))*(v(2)-v(1)))
EB(1:3,1:3,3) = matmul(N(1:3,1:3,1),N(1:3,1:3,2))/((v(3)-v(1))*(v(3)-v(2)))
endif twoSimilarEigVals
endif threeSimilarEigVals
eigenvectorBasis = sqrt(v(1)) * EB(1:3,1:3,1) &
+ sqrt(v(2)) * EB(1:3,1:3,2) &
+ sqrt(v(3)) * EB(1:3,1:3,3)
end function eigenvectorBasis
R = I_U(1)*I_F(2) * math_I3 &
+(I_U(1)**2-I_U(2)) * F &
- I_U(1)*I_F(1) * transpose(F) &
+ I_U(1) * transpose(matmul(F,F)) &
- matmul(F,C)
R = R /(I_U(1)*I_U(2)-I_U(3))
end function math_rotationalPart