updated test for postprocessing and improve some of the scripts

This commit is contained in:
Martin Diehl 2014-08-04 17:53:41 +00:00
parent a787d66763
commit 7df8f04f65
15 changed files with 226 additions and 325 deletions

View File

@ -64,8 +64,7 @@ for file in files:
for datatype,info in datainfo.items():
for label in info['label']:
key = {True :'1_%s',
False:'%s' }[info['len']>1]%label
key = '1_%s'%label
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
missingColumns = True # break if label not found
@ -77,7 +76,7 @@ for file in files:
continue
# ------------------------------------------ assemble header ------------------------------------
table.labels_append(['%i_Cauchy'%(i+1) for i in xrange(datainfo['stress']['len'])]) # extend ASCII header with new labels
table.labels_append(['%i_Cauchy'%(i+1) for i in xrange(9)]) # extend ASCII header with new labels
table.head_write()
# ------------------------------------------ process data ----------------------------------------
@ -87,7 +86,6 @@ for file in files:
column['defgrad'][active['defgrad'][0]]+datainfo['defgrad']['len']]),'d').reshape(3,3)
P = np.array(map(float,table.data[column['stress'][active['stress'][0]]:
column['stress'][active['stress'][0]]+datainfo['stress']['len']]),'d').reshape(3,3)
table.data_append(list(1.0/np.linalg.det(F)*np.dot(P,F.T).reshape(9))) # [Cauchy] = (1/det(F)) * [P].[F_transpose]
outputAlive = table.data_write() # output processed line

View File

@ -26,7 +26,7 @@ parser.add_option('--no-volume','-v', dest='noVolume', action='store_false',
help='do not calculate volume mismatch [%default]')
parser.add_option('-c','--coordinates', dest='coords', action='store', type='string', metavar='string',
help='column heading for coordinates [%default]')
parser.add_option('-f','--deformation', dest='defgrad', action='store', type='string', metavar='string ',
parser.add_option('-f','--defgrad', dest='defgrad', action='store', type='string', metavar='string ',
help='column heading for coordinates [%defgrad]')
parser.set_defaults(noVolume = False)
parser.set_defaults(noShape = False)
@ -82,8 +82,7 @@ for file in files:
# --------------- figure out columns to process ---------------------------------------------------
missingColumns = False
for datatype,info in datainfo.items():
for label in info['label']:
for label in datainfo['defgrad']['label']:
key = '1_%s'%label
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)

View File

@ -92,8 +92,7 @@ for file in files:
for datatype,info in datainfo.items():
for label in info['label']:
key = {True :'1_%s',
False:'%s' }[info['len']>1]%label
key = '1_%s'%label
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
else:
@ -139,7 +138,6 @@ for file in files:
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested norms
table.data_append(list(curl[datatype][label][x,y,z].reshape(datainfo[datatype]['len'])))
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result ---------------------------------------

View File

@ -23,7 +23,7 @@ Operates on periodic ordered three-dimensional data sets.
parser.add_option('-c','--coordinates', dest='coords', action='store', type='string', metavar='string',
help='column heading for coordinates [%default]')
parser.add_option('-d','--defgrad', dest='defgrad', action='store', type='string', metavar='string',
parser.add_option('-f','--defgrad', dest='defgrad', action='store', type='string', metavar='string',
help='heading of columns containing tensor field values')
parser.add_option('-l', '--linear', dest='linearreconstruction', action='store_true',
help='use linear reconstruction of geometry [%default]')
@ -80,8 +80,7 @@ for file in files:
# --------------- figure out columns to process ---------------------------------------------------
missingColumns = False
for datatype,info in datainfo.items():
for label in info['label']:
for label in datainfo['defgrad']['label']:
key = '1_%s'%label
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)

View File

@ -61,33 +61,28 @@ for file in files:
table.head_read() # read ASCII header info
table.info_append(string.replace(scriptID,'\n','\\n') + '\t' + ' '.join(sys.argv[1:]))
active = defaultdict(list)
active = []
column = defaultdict(dict)
for datatype,info in datainfo.items():
for label in info['label']:
key = {True :'1_%s',
False:'%s' }[info['len']>1]%label
for label in datainfo['tensor']['label']:
key = '1_%s'%label
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
else:
active[datatype].append(label)
column[datatype][label] = table.labels.index(key) # remember columns of requested data
active.append(label)
column[label] = table.labels.index(key) # remember columns of requested data
# ------------------------------------------ assemble header ---------------------------------------
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested determinants
for label in active:
table.labels_append('det(%s)'%label) # extend ASCII header with new labels
table.head_write()
# ------------------------------------------ process data ---------------------------------------
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested determinantes
table.data_append(determinant(map(float,table.data[column[datatype][label]:
column[datatype][label]+datainfo[datatype]['len']])))
for label in active:
table.data_append(determinant(map(float,table.data[column[label]:
column[label]+datainfo['tensor']['len']])))
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result ---------------------------------------

View File

@ -65,22 +65,19 @@ for file in files:
table.head_read() # read ASCII header info
table.info_append(string.replace(scriptID,'\n','\\n') + '\t' + ' '.join(sys.argv[1:]))
active = defaultdict(list)
active = []
column = defaultdict(dict)
for datatype,info in datainfo.items():
for label in info['label']:
key = {True :'1_%s',
False:'%s' }[info['len']>1]%label
for label in datainfo['tensor']['label']:
key = '1_%s'%label
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
else:
active[datatype].append(label)
column[datatype][label] = table.labels.index(key) # remember columns of requested data
active.append(label)
column[label] = table.labels.index(key) # remember columns of requested data
# ------------------------------------------ assemble header ---------------------------------------
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested determinants
for label in active:
table.labels_append(['%i_dev(%s)'%(i+1,label) for i in xrange(9)]) # extend ASCII header with new labels
if(options.hydrostatic): table.labels_append('sph(%s)'%label)
table.head_write()
@ -88,13 +85,11 @@ for file in files:
# ------------------------------------------ process data ---------------------------------------
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all deviators
myTensor = map(float,table.data[column[datatype][label]:
column[datatype][label]+datainfo[datatype]['len']])
for label in active:
myTensor = map(float,table.data[column[label]:
column[label]+datainfo['tensor']['len']])
table.data_append(deviator(myTensor))
if(options.hydrostatic): table.data_append(oneThird*(myTensor[0]+myTensor[4]+myTensor[8]))
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result ---------------------------------------

View File

@ -106,8 +106,7 @@ for file in files:
for datatype,info in datainfo.items():
for label in info['label']:
key = {True :'1_%s',
False:'%s' }[info['len']>1]%label
key = '1_%s'%label
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
else:
@ -161,7 +160,6 @@ for file in files:
for label in labels: # loop over all requested
for accuracy in options.accuracy:
table.data_append(list(divergence[datatype][label][accuracy][x,y,z].reshape(datainfo[datatype]['len']//3)))
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result ---------------------------------------

View File

@ -77,23 +77,19 @@ for file in files:
table.head_read() # read ASCII header info
table.info_append(string.replace(scriptID,'\n','\\n') + '\t' + ' '.join(sys.argv[1:]))
active = defaultdict(list)
active = []
column = defaultdict(dict)
for datatype,info in datainfo.items():
for label in info['label']:
foundIt = False
for key in ['1_'+label,label]:
if key in table.labels:
foundIt = True
active[datatype].append(label)
column[datatype][label] = table.labels.index(key) # remember columns of requested data
if not foundIt:
file['croak'].write('column %s not found...\n'%label)
for label in datainfo['vector']['label']:
key = '1_%s'%label
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
else:
active.append(label)
column[label] = table.labels.index(key) # remember columns of requested data
# ------------------------------------------ assemble header ---------------------------------------
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested stiffnesses
for label in active:
table.labels_append('E%i%i%i(%s)'%(options.hkl[0],
options.hkl[1],
options.hkl[2],label)) # extend ASCII header with new labels
@ -102,11 +98,9 @@ for file in files:
# ------------------------------------------ process data ----------------------------------------
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested stiffnesses
table.data_append(E_hkl(map(float,table.data[column[datatype][label]:\
column[datatype][label]+datainfo[datatype]['len']]),options.hkl))
for label in active:
table.data_append(E_hkl(map(float,table.data[column[label]:\
column[label]+datainfo['vector']['len']]),options.hkl))
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result ---------------------------------------

View File

@ -194,8 +194,8 @@ for file in files:
while table.data_read():
for i in xrange(len(feature_list)):
table.data_append(distance[i,l]) # add all distance fields
outputAlive = table.data_write() # output processed line
l += 1
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result ---------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table

View File

@ -61,6 +61,11 @@ if options.a != None and \
if options.matrix != None: datainfo['tensor']['label'] += [options.matrix]; input = 'matrix'
if options.quaternion != None: datainfo['quaternion']['label'] += [options.quaternion]; input = 'quaternion'
inputGiven = 0
for datatype,info in datainfo.items():
inputGiven += len(info['label'])
if inputGiven != 1: parser.error('select exactly one input format...')
toRadians = math.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians
pole = np.array(options.pole)
pole /= np.linalg.norm(pole)
@ -85,18 +90,20 @@ for file in files:
active = defaultdict(list)
column = defaultdict(dict)
missingColumns = False
for datatype,info in datainfo.items():
for label in info['label']:
foundIt = False
for key in ['1_'+label,label]:
if key in table.labels:
foundIt = True
key = '1_%s'%label
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
missingColumns = True # break if label not found
else:
active[datatype].append(label)
column[datatype][label] = table.labels.index(key) # remember columns of requested data
if not foundIt:
file['croak'].write('column %s not found...\n'%label)
break
if missingColumns:
continue
# ------------------------------------------ assemble header ---------------------------------------
table.labels_append(['%i_IPF_%g%g%g'%(i+1,options.pole[0],options.pole[1],options.pole[2]) for i in xrange(3)])

View File

@ -75,8 +75,7 @@ for file in files:
for datatype,info in datainfo.items():
for label in info['label']:
key = {True :'1_%s',
False:'%s' }[info['len']>1]%label
key = '1_%s'%label
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
else:

View File

@ -69,6 +69,11 @@ if options.a != None and \
if options.matrix != None: datainfo['tensor']['label'] += [options.matrix]; input = 'matrix'
if options.quaternion != None: datainfo['quaternion']['label'] += [options.quaternion]; input = 'quaternion'
inputGiven = 0
for datatype,info in datainfo.items():
inputGiven += len(info['label'])
if inputGiven != 1: parser.error('select exactly one input format...')
toRadians = math.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians
options.output = map(lambda x: x.lower(), options.output)
@ -95,18 +100,20 @@ for file in files:
active = defaultdict(list)
column = defaultdict(dict)
missingColumns = False
for datatype,info in datainfo.items():
for label in info['label']:
foundIt = False
for key in ['1_'+label,label]:
if key in table.labels:
foundIt = True
key = '1_%s'%label
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
missingColumns = True # break if label not found
else:
active[datatype].append(label)
column[datatype][label] = table.labels.index(key) # remember columns of requested data
if not foundIt:
file['croak'].write('column %s not found...\n'%label)
break
if missingColumns:
continue
# ------------------------------------------ assemble header ---------------------------------------
for output in options.output:

View File

@ -64,8 +64,7 @@ for file in files:
for datatype,info in datainfo.items():
for label in info['label']:
key = {True :'1_%s',
False:'%s' }[info['len']>1]%label
key = '1_%s'%label
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
missingColumns = True # break if label not found

View File

@ -1,42 +1,27 @@
#!/usr/bin/env python
# -*- coding: UTF-8 no BOM -*-
import os,re,sys,math,numpy,string,damask
from optparse import OptionParser, Option
# -----------------------------
class extendableOption(Option):
# -----------------------------
# used for definition of new option parser action 'extend', which enables to take multiple option arguments
# taken from online tutorial http://docs.python.org/library/optparse.html
ACTIONS = Option.ACTIONS + ("extend",)
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
def take_action(self, action, dest, opt, value, values, parser):
if action == "extend":
lvalue = value.split(",")
values.ensure_value(dest, []).extend(lvalue)
else:
Option.take_action(self, action, dest, opt, value, values, parser)
import os,re,sys,math,string
import numpy as np
from collections import defaultdict
from optparse import OptionParser
import damask
scriptID = '$Id$'
scriptName = scriptID.split()[1]
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
parser = OptionParser(option_class=extendableOption, usage='%prog options [file[s]]', description = """
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Add column(s) containing eigenvalues and eigenvectors of requested tensor column(s).
""" + string.replace('$Id$','\n','\\n')
""", version = string.replace(scriptID,'\n','\\n')
)
parser.add_option('-t','--tensor', dest='tensor', action='extend', type='string', \
parser.add_option('-t','--tensor', dest='tensor', action='extend', type='string', metavar='<string LIST>',
help='heading of columns containing tensor field values')
parser.set_defaults(tensor = [])
(options,filenames) = parser.parse_args()
@ -49,92 +34,54 @@ datainfo = { # lis
'label':[]},
}
datainfo['tensor']['label'] += options.tensor
if options.tensor != None: datainfo['tensor']['label'] += options.tensor
# ------------------------------------------ setup file handles ---------------------------------------
# ------------------------------------------ setup file handles ------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN',
'input':sys.stdin,
'output':sys.stdout,
'croak':sys.stderr,
})
else:
for name in filenames:
for name in filenames:
if os.path.exists(name):
files.append({'name':name,
'input':open(name),
'output':open(name+'_tmp','w'),
'croak':sys.stdout,
})
# ------------------------------------------ loop over input files ---------------------------------------
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
#--- loop over input files ------------------------------------------------------------------------
for file in files:
if file['name'] != 'STDIN': file['croak'].write(file['name']+'\n')
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table = damask.ASCIItable(file['input'],file['output'],True) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(string.replace('$Id$','\n','\\n') + \
'\t' + ' '.join(sys.argv[1:]))
table.info_append(string.replace(scriptID,'\n','\\n') + '\t' + ' '.join(sys.argv[1:]))
active = {}
column = {}
head = []
active = []
column = defaultdict(dict)
for datatype,info in datainfo.items():
for label in info['label']:
key = {True :'1_%s',
False:'%s' }[info['len']>1]%label
for label in datainfo['tensor']['label']:
key = '1_%s'%label
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
else:
if datatype not in active: active[datatype] = []
if datatype not in column: column[datatype] = {}
active[datatype].append(label)
column[datatype][label] = table.labels.index(key) # remember columns of requested data
table.labels_append(['%i_eigval(%s)'%(i+1,label)
for i in xrange(3)]) # extend ASCII header with new labels
table.labels_append(['%i_eigvec(%s)'%(i+1,label)
for i in xrange(9)]) # extend ASCII header with new labels
active.append(label)
column[label] = table.labels.index(key) # remember columns of requested data
# ------------------------------------------ assemble header ---------------------------------------
for labels in active:
table.labels_append(['%i_eigval(%s)'%(i+1,label) for i in xrange(3)]) # extend ASCII header with new labels
table.labels_append(['%i_eigvec(%s)'%(i+1,label) for i in xrange(9)]) # extend ASCII header with new labels
table.head_write()
# ------------------------------------------ process data ---------------------------------------
while table.data_read(): # read next data line of ASCII table
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested norms
tensor = numpy.array(map(float,table.data[column[datatype][label]:
column[datatype][label]+datainfo[datatype]['len']])).reshape((datainfo[datatype]['len']//3,3))
(u,v) = numpy.linalg.eig(tensor)
# ------------------------------------------ process data ----------------------------------------
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
for labels in active: # loop over requested data
tensor = np.array(map(float,table.data[column[label]:column[label]+datainfo['tensor']['len']])).\
reshape((datainfo['tensor']['len']//3,3))
(u,v) = np.linalg.eig(tensor)
table.data_append(list(u))
table.data_append(list(v.transpose().reshape(datainfo[datatype]['len'])))
table.data_write() # output processed line
table.data_append(list(v.transpose().reshape(datainfo['tensor']['len'])))
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result ---------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
table.output_flush() # just in case of buffered ASCII table
try:
file['output'].close() # close output ASCII table
except:
pass
try:
file['croak'].close() # stop croaking
except:
pass
try:
file['input'].close() # close input ASCII table
except:
pass
file['input'].close() # close input ASCII table (works for stdin)
file['output'].close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new

View File

@ -1,74 +1,54 @@
#!/usr/bin/env python
# -*- coding: UTF-8 no BOM -*-
import os,re,sys,math,numpy,string,damask
from optparse import OptionParser, Option
import os,re,sys,math,string
import numpy as np
from collections import defaultdict
from optparse import OptionParser
import damask
scriptID = '$Id$'
scriptName = scriptID.split()[1]
# -----------------------------
class extendableOption(Option):
# -----------------------------
# used for definition of new option parser action 'extend', which enables to take multiple option arguments
# taken from online tutorial http://docs.python.org/library/optparse.html
ACTIONS = Option.ACTIONS + ("extend",)
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
def take_action(self, action, dest, opt, value, values, parser):
if action == "extend":
lvalue = value.split(",")
values.ensure_value(dest, []).extend(lvalue)
else:
Option.take_action(self, action, dest, opt, value, values, parser)
def operator(stretch,strain,eigenvalues):
return { \
'V#ln': numpy.log(eigenvalues) ,
'U#ln': numpy.log(eigenvalues) ,
'V#Biot': ( numpy.ones(3,'d') - 1.0/eigenvalues ) ,
'U#Biot': ( eigenvalues - numpy.ones(3,'d') ) ,
'V#Green': ( numpy.ones(3,'d') - 1.0/eigenvalues*eigenvalues) *0.5,
'U#Green': ( eigenvalues*eigenvalues - numpy.ones(3,'d')) *0.5,
return {
'V#ln': np.log(eigenvalues) ,
'U#ln': np.log(eigenvalues) ,
'V#Biot': ( np.ones(3,'d') - 1.0/eigenvalues ) ,
'U#Biot': ( eigenvalues - np.ones(3,'d') ) ,
'V#Green': ( np.ones(3,'d') - 1.0/eigenvalues*eigenvalues) *0.5,
'U#Green': ( eigenvalues*eigenvalues - np.ones(3,'d')) *0.5,
}[stretch+'#'+strain]
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
parser = OptionParser(option_class=extendableOption, usage='%prog options [file[s]]', description = """
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Add column(s) containing given strains based on given stretches of requested deformation gradient column(s).
""" + string.replace(scriptID,'\n','\\n')
)
parser.add_option('-u','--right', action='store_true', dest='right', \
help='material strains based on right Cauchy--Green deformation, i.e., C and U')
parser.add_option('-v','--left', action='store_true', dest='left', \
help='spatial strains based on left Cauchy--Green deformation, i.e., B and V')
parser.add_option('-l','-0','--logarithmic', action='store_true', dest='logarithmic', \
help='calculate logarithmic strain tensor')
parser.add_option('-b','-1','--biot', action='store_true', dest='biot', \
help='calculate biot strain tensor')
parser.add_option('-g','-2','--green', action='store_true', dest='green', \
help='calculate green strain tensor')
parser.add_option('-f','--deformation', dest='defgrad', action='extend', type='string', \
help='heading(s) of columns containing deformation tensor values [f]')
parser.add_option('-u','--right', dest='right', action='store_true',
help='material strains based on right Cauchy--Green deformation, i.e., C and U [%default]')
parser.add_option('-v','--left', dest='left', action='store_true',
help='spatial strains based on left Cauchy--Green deformation, i.e., B and V [%default]')
parser.add_option('-l','-0','--logarithmic', dest='logarithmic', action='store_true',
help='calculate logarithmic strain tensor [%default]')
parser.add_option('-b','-1','--biot', dest='biot', action='store_true',
help='calculate biot strain tensor [%default]')
parser.add_option('-g','-2','--green', dest='green', action='store_true',
help='calculate green strain tensor [%default]')
parser.add_option('-f','--defgrad', dest='defgrad', action='extend', type='string', metavar = '<string LIST>',
help='heading(s) of columns containing deformation tensor values %default')
parser.set_defaults(right = False)
parser.set_defaults(left = False)
parser.set_defaults(logarithmic = False)
parser.set_defaults(biot = False)
parser.set_defaults(green = False)
parser.set_defaults(defgrad = [])
parser.set_defaults(defgrad = ['f'])
(options,filenames) = parser.parse_args()
@ -87,13 +67,9 @@ datainfo = { # lis
'label':[]},
}
if options.defgrad == []:
datainfo['defgrad']['label'] = ['f']
else:
datainfo['defgrad']['label'] = options.defgrad
datainfo['defgrad']['label'] = options.defgrad
# ------------------------------------------ setup file handles ---------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
@ -103,7 +79,6 @@ else:
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
# ------------------------------------------ loop over input files ---------------------------------------
for file in files:
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
@ -112,68 +87,59 @@ for file in files:
table.head_read() # read ASCII header info
table.info_append(string.replace(scriptID,'\n','\\n') + '\t' + ' '.join(sys.argv[1:]))
active = {}
column = {}
head = []
active = []
column = defaultdict(dict)
for datatype,info in datainfo.items():
for label in info['label']:
key = {True :'1_%s',
False:'%s' }[info['len']>1]%label
for label in datainfo['defgrad']['label']:
key = '1_%s'%label
if key not in table.labels:
sys.stderr.write('column %s not found...\n'%key)
else:
if datatype not in active: active[datatype] = []
if datatype not in column: column[datatype] = {}
active[datatype].append(label)
column[datatype][label] = table.labels.index(key)
for theStretch in stretches:
for theStrain in strains:
table.labels_append(['%i_%s(%s)%s'%(i+1,theStrain,theStretch,
{True: label,False: ''}[label!='f'])
for i in xrange(datainfo['defgrad']['len'])]) # extend ASCII header with new labels
active.append(label)
column[label] = table.labels.index(key)
# ------------------------------------------ assemble header ---------------------------------------
for label in active:
for theStretch in stretches:
for theStrain in strains:
table.labels_append(['%i_%s(%s)%s'%(i+1,theStrain,theStretch,
{True: label,False: ''}[label!='f'])for i in xrange(9)]) # extend ASCII header with new labels
table.head_write()
# ------------------------------------------ process data ---------------------------------------
while table.data_read(): # read next data line of ASCII table
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested norms
F = numpy.array(map(float,table.data[column['defgrad'][active['defgrad'][0]]:
column['defgrad'][active['defgrad'][0]]+datainfo['defgrad']['len']]),'d').reshape(3,3)
(U,S,Vh) = numpy.linalg.svd(F)
R = numpy.dot(U,Vh)
stretch['U'] = numpy.dot(numpy.linalg.inv(R),F)
stretch['V'] = numpy.dot(F,numpy.linalg.inv(R))
# ------------------------------------------ process data ----------------------------------------
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
for label in active: # loop over all requested norms
F = np.array(map(float,table.data[column[label]:
column[label]+datainfo['defgrad']['len']]),'d').reshape(3,3)
(U,S,Vh) = np.linalg.svd(F)
R = np.dot(U,Vh)
stretch['U'] = np.dot(np.linalg.inv(R),F)
stretch['V'] = np.dot(F,np.linalg.inv(R))
for theStretch in stretches:
for i in range(9):
if abs(stretch[theStretch][i%3,i//3]) < 1e-12: # kill nasty noisy data
stretch[theStretch][i%3,i//3] = 0.0
(D,V) = numpy.linalg.eig(stretch[theStretch]) # eigen decomposition (of symmetric matrix)
(D,V) = np.linalg.eig(stretch[theStretch]) # eigen decomposition (of symmetric matrix)
for i,eigval in enumerate(D):
if eigval < 0.0: # flip negative eigenvalues
D[i] = -D[i]
V[:,i] = -V[:,i]
if numpy.dot(V[:,i],V[:,(i+1)%3]) != 0.0: # check each vector for orthogonality
V[:,(i+1)%3] = numpy.cross(V[:,(i+2)%3],V[:,i]) # correct next vector
V[:,(i+1)%3] /= numpy.sqrt(numpy.dot(V[:,(i+1)%3],V[:,(i+1)%3].conj())) # and renormalize (hyperphobic?)
if np.dot(V[:,i],V[:,(i+1)%3]) != 0.0: # check each vector for orthogonality
V[:,(i+1)%3] = np.cross(V[:,(i+2)%3],V[:,i]) # correct next vector
V[:,(i+1)%3] /= np.sqrt(np.dot(V[:,(i+1)%3],V[:,(i+1)%3].conj())) # and renormalize (hyperphobic?)
for theStrain in strains:
d = operator(theStretch,theStrain,D) # operate on eigenvalues of U or V
eps = (numpy.dot(V,numpy.dot(numpy.diag(d),V.T)).real).reshape(9) # build tensor back from eigenvalue/vector basis
eps = (np.dot(V,np.dot(np.diag(d),V.T)).real).reshape(9) # build tensor back from eigenvalue/vector basis
table.data_append(list(eps))
table.data_write() # output processed line
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result ---------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
table.output_flush() # just in case of buffered ASCII table
file['input'].close() # close input ASCII table
file['input'].close() # close input ASCII table (works for stdin)
file['output'].close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
file['output'].close # close output ASCII table
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new