updated test for postprocessing and improve some of the scripts
This commit is contained in:
parent
a787d66763
commit
7df8f04f65
|
@ -64,8 +64,7 @@ for file in files:
|
|||
|
||||
for datatype,info in datainfo.items():
|
||||
for label in info['label']:
|
||||
key = {True :'1_%s',
|
||||
False:'%s' }[info['len']>1]%label
|
||||
key = '1_%s'%label
|
||||
if key not in table.labels:
|
||||
file['croak'].write('column %s not found...\n'%key)
|
||||
missingColumns = True # break if label not found
|
||||
|
@ -77,7 +76,7 @@ for file in files:
|
|||
continue
|
||||
|
||||
# ------------------------------------------ assemble header ------------------------------------
|
||||
table.labels_append(['%i_Cauchy'%(i+1) for i in xrange(datainfo['stress']['len'])]) # extend ASCII header with new labels
|
||||
table.labels_append(['%i_Cauchy'%(i+1) for i in xrange(9)]) # extend ASCII header with new labels
|
||||
table.head_write()
|
||||
|
||||
# ------------------------------------------ process data ----------------------------------------
|
||||
|
@ -87,7 +86,6 @@ for file in files:
|
|||
column['defgrad'][active['defgrad'][0]]+datainfo['defgrad']['len']]),'d').reshape(3,3)
|
||||
P = np.array(map(float,table.data[column['stress'][active['stress'][0]]:
|
||||
column['stress'][active['stress'][0]]+datainfo['stress']['len']]),'d').reshape(3,3)
|
||||
|
||||
table.data_append(list(1.0/np.linalg.det(F)*np.dot(P,F.T).reshape(9))) # [Cauchy] = (1/det(F)) * [P].[F_transpose]
|
||||
outputAlive = table.data_write() # output processed line
|
||||
|
||||
|
|
|
@ -26,7 +26,7 @@ parser.add_option('--no-volume','-v', dest='noVolume', action='store_false',
|
|||
help='do not calculate volume mismatch [%default]')
|
||||
parser.add_option('-c','--coordinates', dest='coords', action='store', type='string', metavar='string',
|
||||
help='column heading for coordinates [%default]')
|
||||
parser.add_option('-f','--deformation', dest='defgrad', action='store', type='string', metavar='string ',
|
||||
parser.add_option('-f','--defgrad', dest='defgrad', action='store', type='string', metavar='string ',
|
||||
help='column heading for coordinates [%defgrad]')
|
||||
parser.set_defaults(noVolume = False)
|
||||
parser.set_defaults(noShape = False)
|
||||
|
@ -82,8 +82,7 @@ for file in files:
|
|||
# --------------- figure out columns to process ---------------------------------------------------
|
||||
missingColumns = False
|
||||
|
||||
for datatype,info in datainfo.items():
|
||||
for label in info['label']:
|
||||
for label in datainfo['defgrad']['label']:
|
||||
key = '1_%s'%label
|
||||
if key not in table.labels:
|
||||
file['croak'].write('column %s not found...\n'%key)
|
||||
|
|
|
@ -92,8 +92,7 @@ for file in files:
|
|||
|
||||
for datatype,info in datainfo.items():
|
||||
for label in info['label']:
|
||||
key = {True :'1_%s',
|
||||
False:'%s' }[info['len']>1]%label
|
||||
key = '1_%s'%label
|
||||
if key not in table.labels:
|
||||
file['croak'].write('column %s not found...\n'%key)
|
||||
else:
|
||||
|
@ -139,7 +138,6 @@ for file in files:
|
|||
for datatype,labels in active.items(): # loop over vector,tensor
|
||||
for label in labels: # loop over all requested norms
|
||||
table.data_append(list(curl[datatype][label][x,y,z].reshape(datainfo[datatype]['len'])))
|
||||
|
||||
outputAlive = table.data_write() # output processed line
|
||||
|
||||
# ------------------------------------------ output result ---------------------------------------
|
||||
|
|
|
@ -23,7 +23,7 @@ Operates on periodic ordered three-dimensional data sets.
|
|||
|
||||
parser.add_option('-c','--coordinates', dest='coords', action='store', type='string', metavar='string',
|
||||
help='column heading for coordinates [%default]')
|
||||
parser.add_option('-d','--defgrad', dest='defgrad', action='store', type='string', metavar='string',
|
||||
parser.add_option('-f','--defgrad', dest='defgrad', action='store', type='string', metavar='string',
|
||||
help='heading of columns containing tensor field values')
|
||||
parser.add_option('-l', '--linear', dest='linearreconstruction', action='store_true',
|
||||
help='use linear reconstruction of geometry [%default]')
|
||||
|
@ -80,8 +80,7 @@ for file in files:
|
|||
# --------------- figure out columns to process ---------------------------------------------------
|
||||
missingColumns = False
|
||||
|
||||
for datatype,info in datainfo.items():
|
||||
for label in info['label']:
|
||||
for label in datainfo['defgrad']['label']:
|
||||
key = '1_%s'%label
|
||||
if key not in table.labels:
|
||||
file['croak'].write('column %s not found...\n'%key)
|
||||
|
|
|
@ -61,33 +61,28 @@ for file in files:
|
|||
table.head_read() # read ASCII header info
|
||||
table.info_append(string.replace(scriptID,'\n','\\n') + '\t' + ' '.join(sys.argv[1:]))
|
||||
|
||||
active = defaultdict(list)
|
||||
active = []
|
||||
column = defaultdict(dict)
|
||||
|
||||
for datatype,info in datainfo.items():
|
||||
for label in info['label']:
|
||||
key = {True :'1_%s',
|
||||
False:'%s' }[info['len']>1]%label
|
||||
for label in datainfo['tensor']['label']:
|
||||
key = '1_%s'%label
|
||||
if key not in table.labels:
|
||||
file['croak'].write('column %s not found...\n'%key)
|
||||
else:
|
||||
active[datatype].append(label)
|
||||
column[datatype][label] = table.labels.index(key) # remember columns of requested data
|
||||
active.append(label)
|
||||
column[label] = table.labels.index(key) # remember columns of requested data
|
||||
|
||||
# ------------------------------------------ assemble header ---------------------------------------
|
||||
for datatype,labels in active.items(): # loop over vector,tensor
|
||||
for label in labels: # loop over all requested determinants
|
||||
for label in active:
|
||||
table.labels_append('det(%s)'%label) # extend ASCII header with new labels
|
||||
table.head_write()
|
||||
|
||||
# ------------------------------------------ process data ---------------------------------------
|
||||
outputAlive = True
|
||||
while outputAlive and table.data_read(): # read next data line of ASCII table
|
||||
for datatype,labels in active.items(): # loop over vector,tensor
|
||||
for label in labels: # loop over all requested determinantes
|
||||
table.data_append(determinant(map(float,table.data[column[datatype][label]:
|
||||
column[datatype][label]+datainfo[datatype]['len']])))
|
||||
|
||||
for label in active:
|
||||
table.data_append(determinant(map(float,table.data[column[label]:
|
||||
column[label]+datainfo['tensor']['len']])))
|
||||
outputAlive = table.data_write() # output processed line
|
||||
|
||||
# ------------------------------------------ output result ---------------------------------------
|
||||
|
|
|
@ -65,22 +65,19 @@ for file in files:
|
|||
table.head_read() # read ASCII header info
|
||||
table.info_append(string.replace(scriptID,'\n','\\n') + '\t' + ' '.join(sys.argv[1:]))
|
||||
|
||||
active = defaultdict(list)
|
||||
active = []
|
||||
column = defaultdict(dict)
|
||||
|
||||
for datatype,info in datainfo.items():
|
||||
for label in info['label']:
|
||||
key = {True :'1_%s',
|
||||
False:'%s' }[info['len']>1]%label
|
||||
for label in datainfo['tensor']['label']:
|
||||
key = '1_%s'%label
|
||||
if key not in table.labels:
|
||||
file['croak'].write('column %s not found...\n'%key)
|
||||
else:
|
||||
active[datatype].append(label)
|
||||
column[datatype][label] = table.labels.index(key) # remember columns of requested data
|
||||
active.append(label)
|
||||
column[label] = table.labels.index(key) # remember columns of requested data
|
||||
|
||||
# ------------------------------------------ assemble header ---------------------------------------
|
||||
for datatype,labels in active.items(): # loop over vector,tensor
|
||||
for label in labels: # loop over all requested determinants
|
||||
for label in active:
|
||||
table.labels_append(['%i_dev(%s)'%(i+1,label) for i in xrange(9)]) # extend ASCII header with new labels
|
||||
if(options.hydrostatic): table.labels_append('sph(%s)'%label)
|
||||
table.head_write()
|
||||
|
@ -88,13 +85,11 @@ for file in files:
|
|||
# ------------------------------------------ process data ---------------------------------------
|
||||
outputAlive = True
|
||||
while outputAlive and table.data_read(): # read next data line of ASCII table
|
||||
for datatype,labels in active.items(): # loop over vector,tensor
|
||||
for label in labels: # loop over all deviators
|
||||
myTensor = map(float,table.data[column[datatype][label]:
|
||||
column[datatype][label]+datainfo[datatype]['len']])
|
||||
for label in active:
|
||||
myTensor = map(float,table.data[column[label]:
|
||||
column[label]+datainfo['tensor']['len']])
|
||||
table.data_append(deviator(myTensor))
|
||||
if(options.hydrostatic): table.data_append(oneThird*(myTensor[0]+myTensor[4]+myTensor[8]))
|
||||
|
||||
outputAlive = table.data_write() # output processed line
|
||||
|
||||
# ------------------------------------------ output result ---------------------------------------
|
||||
|
|
|
@ -106,8 +106,7 @@ for file in files:
|
|||
|
||||
for datatype,info in datainfo.items():
|
||||
for label in info['label']:
|
||||
key = {True :'1_%s',
|
||||
False:'%s' }[info['len']>1]%label
|
||||
key = '1_%s'%label
|
||||
if key not in table.labels:
|
||||
file['croak'].write('column %s not found...\n'%key)
|
||||
else:
|
||||
|
@ -161,7 +160,6 @@ for file in files:
|
|||
for label in labels: # loop over all requested
|
||||
for accuracy in options.accuracy:
|
||||
table.data_append(list(divergence[datatype][label][accuracy][x,y,z].reshape(datainfo[datatype]['len']//3)))
|
||||
|
||||
outputAlive = table.data_write() # output processed line
|
||||
|
||||
# ------------------------------------------ output result ---------------------------------------
|
||||
|
|
|
@ -77,23 +77,19 @@ for file in files:
|
|||
table.head_read() # read ASCII header info
|
||||
table.info_append(string.replace(scriptID,'\n','\\n') + '\t' + ' '.join(sys.argv[1:]))
|
||||
|
||||
active = defaultdict(list)
|
||||
active = []
|
||||
column = defaultdict(dict)
|
||||
|
||||
for datatype,info in datainfo.items():
|
||||
for label in info['label']:
|
||||
foundIt = False
|
||||
for key in ['1_'+label,label]:
|
||||
if key in table.labels:
|
||||
foundIt = True
|
||||
active[datatype].append(label)
|
||||
column[datatype][label] = table.labels.index(key) # remember columns of requested data
|
||||
if not foundIt:
|
||||
file['croak'].write('column %s not found...\n'%label)
|
||||
for label in datainfo['vector']['label']:
|
||||
key = '1_%s'%label
|
||||
if key not in table.labels:
|
||||
file['croak'].write('column %s not found...\n'%key)
|
||||
else:
|
||||
active.append(label)
|
||||
column[label] = table.labels.index(key) # remember columns of requested data
|
||||
|
||||
# ------------------------------------------ assemble header ---------------------------------------
|
||||
for datatype,labels in active.items(): # loop over vector,tensor
|
||||
for label in labels: # loop over all requested stiffnesses
|
||||
for label in active:
|
||||
table.labels_append('E%i%i%i(%s)'%(options.hkl[0],
|
||||
options.hkl[1],
|
||||
options.hkl[2],label)) # extend ASCII header with new labels
|
||||
|
@ -102,11 +98,9 @@ for file in files:
|
|||
# ------------------------------------------ process data ----------------------------------------
|
||||
outputAlive = True
|
||||
while outputAlive and table.data_read(): # read next data line of ASCII table
|
||||
for datatype,labels in active.items(): # loop over vector,tensor
|
||||
for label in labels: # loop over all requested stiffnesses
|
||||
table.data_append(E_hkl(map(float,table.data[column[datatype][label]:\
|
||||
column[datatype][label]+datainfo[datatype]['len']]),options.hkl))
|
||||
|
||||
for label in active:
|
||||
table.data_append(E_hkl(map(float,table.data[column[label]:\
|
||||
column[label]+datainfo['vector']['len']]),options.hkl))
|
||||
outputAlive = table.data_write() # output processed line
|
||||
|
||||
# ------------------------------------------ output result ---------------------------------------
|
||||
|
|
|
@ -194,8 +194,8 @@ for file in files:
|
|||
while table.data_read():
|
||||
for i in xrange(len(feature_list)):
|
||||
table.data_append(distance[i,l]) # add all distance fields
|
||||
outputAlive = table.data_write() # output processed line
|
||||
l += 1
|
||||
outputAlive = table.data_write() # output processed line
|
||||
|
||||
# ------------------------------------------ output result ---------------------------------------
|
||||
outputAlive and table.output_flush() # just in case of buffered ASCII table
|
||||
|
|
|
@ -61,6 +61,11 @@ if options.a != None and \
|
|||
if options.matrix != None: datainfo['tensor']['label'] += [options.matrix]; input = 'matrix'
|
||||
if options.quaternion != None: datainfo['quaternion']['label'] += [options.quaternion]; input = 'quaternion'
|
||||
|
||||
inputGiven = 0
|
||||
for datatype,info in datainfo.items():
|
||||
inputGiven += len(info['label'])
|
||||
if inputGiven != 1: parser.error('select exactly one input format...')
|
||||
|
||||
toRadians = math.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians
|
||||
pole = np.array(options.pole)
|
||||
pole /= np.linalg.norm(pole)
|
||||
|
@ -85,18 +90,20 @@ for file in files:
|
|||
|
||||
active = defaultdict(list)
|
||||
column = defaultdict(dict)
|
||||
missingColumns = False
|
||||
|
||||
for datatype,info in datainfo.items():
|
||||
for label in info['label']:
|
||||
foundIt = False
|
||||
for key in ['1_'+label,label]:
|
||||
if key in table.labels:
|
||||
foundIt = True
|
||||
key = '1_%s'%label
|
||||
if key not in table.labels:
|
||||
file['croak'].write('column %s not found...\n'%key)
|
||||
missingColumns = True # break if label not found
|
||||
else:
|
||||
active[datatype].append(label)
|
||||
column[datatype][label] = table.labels.index(key) # remember columns of requested data
|
||||
if not foundIt:
|
||||
file['croak'].write('column %s not found...\n'%label)
|
||||
break
|
||||
|
||||
if missingColumns:
|
||||
continue
|
||||
|
||||
# ------------------------------------------ assemble header ---------------------------------------
|
||||
table.labels_append(['%i_IPF_%g%g%g'%(i+1,options.pole[0],options.pole[1],options.pole[2]) for i in xrange(3)])
|
||||
|
|
|
@ -75,8 +75,7 @@ for file in files:
|
|||
|
||||
for datatype,info in datainfo.items():
|
||||
for label in info['label']:
|
||||
key = {True :'1_%s',
|
||||
False:'%s' }[info['len']>1]%label
|
||||
key = '1_%s'%label
|
||||
if key not in table.labels:
|
||||
file['croak'].write('column %s not found...\n'%key)
|
||||
else:
|
||||
|
|
|
@ -69,6 +69,11 @@ if options.a != None and \
|
|||
if options.matrix != None: datainfo['tensor']['label'] += [options.matrix]; input = 'matrix'
|
||||
if options.quaternion != None: datainfo['quaternion']['label'] += [options.quaternion]; input = 'quaternion'
|
||||
|
||||
inputGiven = 0
|
||||
for datatype,info in datainfo.items():
|
||||
inputGiven += len(info['label'])
|
||||
if inputGiven != 1: parser.error('select exactly one input format...')
|
||||
|
||||
toRadians = math.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians
|
||||
options.output = map(lambda x: x.lower(), options.output)
|
||||
|
||||
|
@ -95,18 +100,20 @@ for file in files:
|
|||
|
||||
active = defaultdict(list)
|
||||
column = defaultdict(dict)
|
||||
missingColumns = False
|
||||
|
||||
for datatype,info in datainfo.items():
|
||||
for label in info['label']:
|
||||
foundIt = False
|
||||
for key in ['1_'+label,label]:
|
||||
if key in table.labels:
|
||||
foundIt = True
|
||||
key = '1_%s'%label
|
||||
if key not in table.labels:
|
||||
file['croak'].write('column %s not found...\n'%key)
|
||||
missingColumns = True # break if label not found
|
||||
else:
|
||||
active[datatype].append(label)
|
||||
column[datatype][label] = table.labels.index(key) # remember columns of requested data
|
||||
if not foundIt:
|
||||
file['croak'].write('column %s not found...\n'%label)
|
||||
break
|
||||
|
||||
if missingColumns:
|
||||
continue
|
||||
|
||||
# ------------------------------------------ assemble header ---------------------------------------
|
||||
for output in options.output:
|
||||
|
|
|
@ -64,8 +64,7 @@ for file in files:
|
|||
|
||||
for datatype,info in datainfo.items():
|
||||
for label in info['label']:
|
||||
key = {True :'1_%s',
|
||||
False:'%s' }[info['len']>1]%label
|
||||
key = '1_%s'%label
|
||||
if key not in table.labels:
|
||||
file['croak'].write('column %s not found...\n'%key)
|
||||
missingColumns = True # break if label not found
|
||||
|
|
|
@ -1,42 +1,27 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- coding: UTF-8 no BOM -*-
|
||||
|
||||
import os,re,sys,math,numpy,string,damask
|
||||
from optparse import OptionParser, Option
|
||||
|
||||
# -----------------------------
|
||||
class extendableOption(Option):
|
||||
# -----------------------------
|
||||
# used for definition of new option parser action 'extend', which enables to take multiple option arguments
|
||||
# taken from online tutorial http://docs.python.org/library/optparse.html
|
||||
|
||||
ACTIONS = Option.ACTIONS + ("extend",)
|
||||
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
|
||||
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
|
||||
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
|
||||
|
||||
def take_action(self, action, dest, opt, value, values, parser):
|
||||
if action == "extend":
|
||||
lvalue = value.split(",")
|
||||
values.ensure_value(dest, []).extend(lvalue)
|
||||
else:
|
||||
Option.take_action(self, action, dest, opt, value, values, parser)
|
||||
import os,re,sys,math,string
|
||||
import numpy as np
|
||||
from collections import defaultdict
|
||||
from optparse import OptionParser
|
||||
import damask
|
||||
|
||||
scriptID = '$Id$'
|
||||
scriptName = scriptID.split()[1]
|
||||
|
||||
# --------------------------------------------------------------------
|
||||
# MAIN
|
||||
# --------------------------------------------------------------------
|
||||
|
||||
parser = OptionParser(option_class=extendableOption, usage='%prog options [file[s]]', description = """
|
||||
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
||||
Add column(s) containing eigenvalues and eigenvectors of requested tensor column(s).
|
||||
|
||||
""" + string.replace('$Id$','\n','\\n')
|
||||
""", version = string.replace(scriptID,'\n','\\n')
|
||||
)
|
||||
|
||||
|
||||
parser.add_option('-t','--tensor', dest='tensor', action='extend', type='string', \
|
||||
parser.add_option('-t','--tensor', dest='tensor', action='extend', type='string', metavar='<string LIST>',
|
||||
help='heading of columns containing tensor field values')
|
||||
|
||||
parser.set_defaults(tensor = [])
|
||||
|
||||
(options,filenames) = parser.parse_args()
|
||||
|
@ -49,92 +34,54 @@ datainfo = { # lis
|
|||
'label':[]},
|
||||
}
|
||||
|
||||
datainfo['tensor']['label'] += options.tensor
|
||||
|
||||
if options.tensor != None: datainfo['tensor']['label'] += options.tensor
|
||||
|
||||
# ------------------------------------------ setup file handles ---------------------------------------
|
||||
|
||||
# ------------------------------------------ setup file handles ------------------------------------
|
||||
files = []
|
||||
if filenames == []:
|
||||
files.append({'name':'STDIN',
|
||||
'input':sys.stdin,
|
||||
'output':sys.stdout,
|
||||
'croak':sys.stderr,
|
||||
})
|
||||
else:
|
||||
for name in filenames:
|
||||
for name in filenames:
|
||||
if os.path.exists(name):
|
||||
files.append({'name':name,
|
||||
'input':open(name),
|
||||
'output':open(name+'_tmp','w'),
|
||||
'croak':sys.stdout,
|
||||
})
|
||||
|
||||
# ------------------------------------------ loop over input files ---------------------------------------
|
||||
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
|
||||
|
||||
#--- loop over input files ------------------------------------------------------------------------
|
||||
for file in files:
|
||||
if file['name'] != 'STDIN': file['croak'].write(file['name']+'\n')
|
||||
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
|
||||
|
||||
|
||||
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
|
||||
table = damask.ASCIItable(file['input'],file['output'],True) # make unbuffered ASCII_table
|
||||
table.head_read() # read ASCII header info
|
||||
table.info_append(string.replace('$Id$','\n','\\n') + \
|
||||
'\t' + ' '.join(sys.argv[1:]))
|
||||
table.info_append(string.replace(scriptID,'\n','\\n') + '\t' + ' '.join(sys.argv[1:]))
|
||||
|
||||
active = {}
|
||||
column = {}
|
||||
head = []
|
||||
active = []
|
||||
column = defaultdict(dict)
|
||||
|
||||
for datatype,info in datainfo.items():
|
||||
for label in info['label']:
|
||||
key = {True :'1_%s',
|
||||
False:'%s' }[info['len']>1]%label
|
||||
for label in datainfo['tensor']['label']:
|
||||
key = '1_%s'%label
|
||||
if key not in table.labels:
|
||||
file['croak'].write('column %s not found...\n'%key)
|
||||
else:
|
||||
if datatype not in active: active[datatype] = []
|
||||
if datatype not in column: column[datatype] = {}
|
||||
active[datatype].append(label)
|
||||
column[datatype][label] = table.labels.index(key) # remember columns of requested data
|
||||
table.labels_append(['%i_eigval(%s)'%(i+1,label)
|
||||
for i in xrange(3)]) # extend ASCII header with new labels
|
||||
table.labels_append(['%i_eigvec(%s)'%(i+1,label)
|
||||
for i in xrange(9)]) # extend ASCII header with new labels
|
||||
active.append(label)
|
||||
column[label] = table.labels.index(key) # remember columns of requested data
|
||||
|
||||
# ------------------------------------------ assemble header ---------------------------------------
|
||||
|
||||
for labels in active:
|
||||
table.labels_append(['%i_eigval(%s)'%(i+1,label) for i in xrange(3)]) # extend ASCII header with new labels
|
||||
table.labels_append(['%i_eigvec(%s)'%(i+1,label) for i in xrange(9)]) # extend ASCII header with new labels
|
||||
table.head_write()
|
||||
|
||||
# ------------------------------------------ process data ---------------------------------------
|
||||
|
||||
while table.data_read(): # read next data line of ASCII table
|
||||
|
||||
for datatype,labels in active.items(): # loop over vector,tensor
|
||||
for label in labels: # loop over all requested norms
|
||||
tensor = numpy.array(map(float,table.data[column[datatype][label]:
|
||||
column[datatype][label]+datainfo[datatype]['len']])).reshape((datainfo[datatype]['len']//3,3))
|
||||
(u,v) = numpy.linalg.eig(tensor)
|
||||
# ------------------------------------------ process data ----------------------------------------
|
||||
outputAlive = True
|
||||
while outputAlive and table.data_read(): # read next data line of ASCII table
|
||||
for labels in active: # loop over requested data
|
||||
tensor = np.array(map(float,table.data[column[label]:column[label]+datainfo['tensor']['len']])).\
|
||||
reshape((datainfo['tensor']['len']//3,3))
|
||||
(u,v) = np.linalg.eig(tensor)
|
||||
table.data_append(list(u))
|
||||
table.data_append(list(v.transpose().reshape(datainfo[datatype]['len'])))
|
||||
|
||||
table.data_write() # output processed line
|
||||
table.data_append(list(v.transpose().reshape(datainfo['tensor']['len'])))
|
||||
outputAlive = table.data_write() # output processed line
|
||||
|
||||
# ------------------------------------------ output result ---------------------------------------
|
||||
outputAlive and table.output_flush() # just in case of buffered ASCII table
|
||||
|
||||
table.output_flush() # just in case of buffered ASCII table
|
||||
|
||||
try:
|
||||
file['output'].close() # close output ASCII table
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
file['croak'].close() # stop croaking
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
file['input'].close() # close input ASCII table
|
||||
except:
|
||||
pass
|
||||
|
||||
file['input'].close() # close input ASCII table (works for stdin)
|
||||
file['output'].close() # close output ASCII table (works for stdout)
|
||||
if file['name'] != 'STDIN':
|
||||
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
|
||||
|
|
|
@ -1,74 +1,54 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- coding: UTF-8 no BOM -*-
|
||||
|
||||
import os,re,sys,math,numpy,string,damask
|
||||
from optparse import OptionParser, Option
|
||||
import os,re,sys,math,string
|
||||
import numpy as np
|
||||
from collections import defaultdict
|
||||
from optparse import OptionParser
|
||||
import damask
|
||||
|
||||
scriptID = '$Id$'
|
||||
scriptName = scriptID.split()[1]
|
||||
|
||||
# -----------------------------
|
||||
class extendableOption(Option):
|
||||
# -----------------------------
|
||||
# used for definition of new option parser action 'extend', which enables to take multiple option arguments
|
||||
# taken from online tutorial http://docs.python.org/library/optparse.html
|
||||
|
||||
ACTIONS = Option.ACTIONS + ("extend",)
|
||||
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
|
||||
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
|
||||
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
|
||||
|
||||
def take_action(self, action, dest, opt, value, values, parser):
|
||||
if action == "extend":
|
||||
lvalue = value.split(",")
|
||||
values.ensure_value(dest, []).extend(lvalue)
|
||||
else:
|
||||
Option.take_action(self, action, dest, opt, value, values, parser)
|
||||
|
||||
|
||||
|
||||
def operator(stretch,strain,eigenvalues):
|
||||
return { \
|
||||
'V#ln': numpy.log(eigenvalues) ,
|
||||
'U#ln': numpy.log(eigenvalues) ,
|
||||
'V#Biot': ( numpy.ones(3,'d') - 1.0/eigenvalues ) ,
|
||||
'U#Biot': ( eigenvalues - numpy.ones(3,'d') ) ,
|
||||
'V#Green': ( numpy.ones(3,'d') - 1.0/eigenvalues*eigenvalues) *0.5,
|
||||
'U#Green': ( eigenvalues*eigenvalues - numpy.ones(3,'d')) *0.5,
|
||||
return {
|
||||
'V#ln': np.log(eigenvalues) ,
|
||||
'U#ln': np.log(eigenvalues) ,
|
||||
'V#Biot': ( np.ones(3,'d') - 1.0/eigenvalues ) ,
|
||||
'U#Biot': ( eigenvalues - np.ones(3,'d') ) ,
|
||||
'V#Green': ( np.ones(3,'d') - 1.0/eigenvalues*eigenvalues) *0.5,
|
||||
'U#Green': ( eigenvalues*eigenvalues - np.ones(3,'d')) *0.5,
|
||||
}[stretch+'#'+strain]
|
||||
|
||||
|
||||
|
||||
# --------------------------------------------------------------------
|
||||
# MAIN
|
||||
# --------------------------------------------------------------------
|
||||
|
||||
parser = OptionParser(option_class=extendableOption, usage='%prog options [file[s]]', description = """
|
||||
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
||||
Add column(s) containing given strains based on given stretches of requested deformation gradient column(s).
|
||||
|
||||
""" + string.replace(scriptID,'\n','\\n')
|
||||
)
|
||||
|
||||
|
||||
parser.add_option('-u','--right', action='store_true', dest='right', \
|
||||
help='material strains based on right Cauchy--Green deformation, i.e., C and U')
|
||||
parser.add_option('-v','--left', action='store_true', dest='left', \
|
||||
help='spatial strains based on left Cauchy--Green deformation, i.e., B and V')
|
||||
parser.add_option('-l','-0','--logarithmic', action='store_true', dest='logarithmic', \
|
||||
help='calculate logarithmic strain tensor')
|
||||
parser.add_option('-b','-1','--biot', action='store_true', dest='biot', \
|
||||
help='calculate biot strain tensor')
|
||||
parser.add_option('-g','-2','--green', action='store_true', dest='green', \
|
||||
help='calculate green strain tensor')
|
||||
parser.add_option('-f','--deformation', dest='defgrad', action='extend', type='string', \
|
||||
help='heading(s) of columns containing deformation tensor values [f]')
|
||||
|
||||
parser.add_option('-u','--right', dest='right', action='store_true',
|
||||
help='material strains based on right Cauchy--Green deformation, i.e., C and U [%default]')
|
||||
parser.add_option('-v','--left', dest='left', action='store_true',
|
||||
help='spatial strains based on left Cauchy--Green deformation, i.e., B and V [%default]')
|
||||
parser.add_option('-l','-0','--logarithmic', dest='logarithmic', action='store_true',
|
||||
help='calculate logarithmic strain tensor [%default]')
|
||||
parser.add_option('-b','-1','--biot', dest='biot', action='store_true',
|
||||
help='calculate biot strain tensor [%default]')
|
||||
parser.add_option('-g','-2','--green', dest='green', action='store_true',
|
||||
help='calculate green strain tensor [%default]')
|
||||
parser.add_option('-f','--defgrad', dest='defgrad', action='extend', type='string', metavar = '<string LIST>',
|
||||
help='heading(s) of columns containing deformation tensor values %default')
|
||||
parser.set_defaults(right = False)
|
||||
parser.set_defaults(left = False)
|
||||
parser.set_defaults(logarithmic = False)
|
||||
parser.set_defaults(biot = False)
|
||||
parser.set_defaults(green = False)
|
||||
parser.set_defaults(defgrad = [])
|
||||
parser.set_defaults(defgrad = ['f'])
|
||||
|
||||
(options,filenames) = parser.parse_args()
|
||||
|
||||
|
@ -87,13 +67,9 @@ datainfo = { # lis
|
|||
'label':[]},
|
||||
}
|
||||
|
||||
if options.defgrad == []:
|
||||
datainfo['defgrad']['label'] = ['f']
|
||||
else:
|
||||
datainfo['defgrad']['label'] = options.defgrad
|
||||
datainfo['defgrad']['label'] = options.defgrad
|
||||
|
||||
# ------------------------------------------ setup file handles ---------------------------------------
|
||||
|
||||
files = []
|
||||
if filenames == []:
|
||||
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
|
||||
|
@ -103,7 +79,6 @@ else:
|
|||
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
|
||||
|
||||
# ------------------------------------------ loop over input files ---------------------------------------
|
||||
|
||||
for file in files:
|
||||
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
|
||||
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
|
||||
|
@ -112,68 +87,59 @@ for file in files:
|
|||
table.head_read() # read ASCII header info
|
||||
table.info_append(string.replace(scriptID,'\n','\\n') + '\t' + ' '.join(sys.argv[1:]))
|
||||
|
||||
active = {}
|
||||
column = {}
|
||||
head = []
|
||||
active = []
|
||||
column = defaultdict(dict)
|
||||
|
||||
for datatype,info in datainfo.items():
|
||||
for label in info['label']:
|
||||
key = {True :'1_%s',
|
||||
False:'%s' }[info['len']>1]%label
|
||||
for label in datainfo['defgrad']['label']:
|
||||
key = '1_%s'%label
|
||||
if key not in table.labels:
|
||||
sys.stderr.write('column %s not found...\n'%key)
|
||||
else:
|
||||
if datatype not in active: active[datatype] = []
|
||||
if datatype not in column: column[datatype] = {}
|
||||
active[datatype].append(label)
|
||||
column[datatype][label] = table.labels.index(key)
|
||||
for theStretch in stretches:
|
||||
for theStrain in strains:
|
||||
table.labels_append(['%i_%s(%s)%s'%(i+1,theStrain,theStretch,
|
||||
{True: label,False: ''}[label!='f'])
|
||||
for i in xrange(datainfo['defgrad']['len'])]) # extend ASCII header with new labels
|
||||
active.append(label)
|
||||
column[label] = table.labels.index(key)
|
||||
|
||||
# ------------------------------------------ assemble header ---------------------------------------
|
||||
|
||||
for label in active:
|
||||
for theStretch in stretches:
|
||||
for theStrain in strains:
|
||||
table.labels_append(['%i_%s(%s)%s'%(i+1,theStrain,theStretch,
|
||||
{True: label,False: ''}[label!='f'])for i in xrange(9)]) # extend ASCII header with new labels
|
||||
table.head_write()
|
||||
|
||||
# ------------------------------------------ process data ---------------------------------------
|
||||
|
||||
while table.data_read(): # read next data line of ASCII table
|
||||
|
||||
for datatype,labels in active.items(): # loop over vector,tensor
|
||||
for label in labels: # loop over all requested norms
|
||||
F = numpy.array(map(float,table.data[column['defgrad'][active['defgrad'][0]]:
|
||||
column['defgrad'][active['defgrad'][0]]+datainfo['defgrad']['len']]),'d').reshape(3,3)
|
||||
(U,S,Vh) = numpy.linalg.svd(F)
|
||||
R = numpy.dot(U,Vh)
|
||||
stretch['U'] = numpy.dot(numpy.linalg.inv(R),F)
|
||||
stretch['V'] = numpy.dot(F,numpy.linalg.inv(R))
|
||||
# ------------------------------------------ process data ----------------------------------------
|
||||
outputAlive = True
|
||||
while outputAlive and table.data_read(): # read next data line of ASCII table
|
||||
for label in active: # loop over all requested norms
|
||||
F = np.array(map(float,table.data[column[label]:
|
||||
column[label]+datainfo['defgrad']['len']]),'d').reshape(3,3)
|
||||
(U,S,Vh) = np.linalg.svd(F)
|
||||
R = np.dot(U,Vh)
|
||||
stretch['U'] = np.dot(np.linalg.inv(R),F)
|
||||
stretch['V'] = np.dot(F,np.linalg.inv(R))
|
||||
for theStretch in stretches:
|
||||
for i in range(9):
|
||||
if abs(stretch[theStretch][i%3,i//3]) < 1e-12: # kill nasty noisy data
|
||||
stretch[theStretch][i%3,i//3] = 0.0
|
||||
(D,V) = numpy.linalg.eig(stretch[theStretch]) # eigen decomposition (of symmetric matrix)
|
||||
(D,V) = np.linalg.eig(stretch[theStretch]) # eigen decomposition (of symmetric matrix)
|
||||
for i,eigval in enumerate(D):
|
||||
if eigval < 0.0: # flip negative eigenvalues
|
||||
D[i] = -D[i]
|
||||
V[:,i] = -V[:,i]
|
||||
if numpy.dot(V[:,i],V[:,(i+1)%3]) != 0.0: # check each vector for orthogonality
|
||||
V[:,(i+1)%3] = numpy.cross(V[:,(i+2)%3],V[:,i]) # correct next vector
|
||||
V[:,(i+1)%3] /= numpy.sqrt(numpy.dot(V[:,(i+1)%3],V[:,(i+1)%3].conj())) # and renormalize (hyperphobic?)
|
||||
if np.dot(V[:,i],V[:,(i+1)%3]) != 0.0: # check each vector for orthogonality
|
||||
V[:,(i+1)%3] = np.cross(V[:,(i+2)%3],V[:,i]) # correct next vector
|
||||
V[:,(i+1)%3] /= np.sqrt(np.dot(V[:,(i+1)%3],V[:,(i+1)%3].conj())) # and renormalize (hyperphobic?)
|
||||
for theStrain in strains:
|
||||
d = operator(theStretch,theStrain,D) # operate on eigenvalues of U or V
|
||||
eps = (numpy.dot(V,numpy.dot(numpy.diag(d),V.T)).real).reshape(9) # build tensor back from eigenvalue/vector basis
|
||||
eps = (np.dot(V,np.dot(np.diag(d),V.T)).real).reshape(9) # build tensor back from eigenvalue/vector basis
|
||||
|
||||
table.data_append(list(eps))
|
||||
|
||||
table.data_write() # output processed line
|
||||
outputAlive = table.data_write() # output processed line
|
||||
|
||||
# ------------------------------------------ output result ---------------------------------------
|
||||
outputAlive and table.output_flush() # just in case of buffered ASCII table
|
||||
|
||||
table.output_flush() # just in case of buffered ASCII table
|
||||
|
||||
file['input'].close() # close input ASCII table
|
||||
file['input'].close() # close input ASCII table (works for stdin)
|
||||
file['output'].close() # close output ASCII table (works for stdout)
|
||||
if file['name'] != 'STDIN':
|
||||
file['output'].close # close output ASCII table
|
||||
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
|
||||
|
|
Loading…
Reference in New Issue