149 lines
8.6 KiB
Python
Executable File
149 lines
8.6 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# -*- coding: UTF-8 no BOM -*-
|
|
|
|
import os,re,sys,math,string
|
|
import numpy as np
|
|
from collections import defaultdict
|
|
from optparse import OptionParser
|
|
import damask
|
|
|
|
scriptID = '$Id$'
|
|
scriptName = scriptID.split()[1]
|
|
|
|
# --------------------------------------------------------------------
|
|
# MAIN
|
|
# --------------------------------------------------------------------
|
|
|
|
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
|
Add column(s) containing curl of requested column(s).
|
|
Operates on periodic ordered three-dimensional data sets.
|
|
Deals with both vector- and tensor-valued fields.
|
|
|
|
""", version = string.replace(scriptID,'\n','\\n')
|
|
)
|
|
|
|
parser.add_option('-c','--coordinates', dest='coords', action='store', type='string', metavar='string',
|
|
help='column heading for coordinates [%default]')
|
|
parser.add_option('-v','--vector', dest='vector', action='extend', type='string', metavar='<string LIST>',
|
|
help='heading of columns containing vector field values')
|
|
parser.add_option('-t','--tensor', dest='tensor', action='extend', type='string', metavar='<string LIST>',
|
|
help='heading of columns containing tensor field values')
|
|
parser.set_defaults(coords = 'ip')
|
|
parser.set_defaults(vector = [])
|
|
parser.set_defaults(tensor = [])
|
|
|
|
(options,filenames) = parser.parse_args()
|
|
|
|
if len(options.vector) + len(options.tensor) == 0:
|
|
parser.error('no data column specified...')
|
|
|
|
datainfo = { # list of requested labels per datatype
|
|
'vector': {'len':3,
|
|
'label':[]},
|
|
'tensor': {'len':9,
|
|
'label':[]},
|
|
}
|
|
|
|
if options.vector != None: datainfo['vector']['label'] += options.vector
|
|
if options.tensor != None: datainfo['tensor']['label'] += options.tensor
|
|
|
|
# ------------------------------------------ setup file handles ------------------------------------
|
|
files = []
|
|
for name in filenames:
|
|
if os.path.exists(name):
|
|
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
|
|
|
|
#--- loop over input files ------------------------------------------------------------------------
|
|
for file in files:
|
|
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
|
|
|
|
table = damask.ASCIItable(file['input'],file['output'],True) # make unbuffered ASCII_table
|
|
table.head_read() # read ASCII header info
|
|
table.info_append(string.replace(scriptID,'\n','\\n') + '\t' + ' '.join(sys.argv[1:]))
|
|
|
|
# --------------- figure out dimension and resolution ----------------------------------------------
|
|
try:
|
|
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data
|
|
except ValueError:
|
|
file['croak'].write('no coordinate data found...\n'%key)
|
|
continue
|
|
|
|
grid = [{},{},{}]
|
|
while table.data_read(): # read next data line of ASCII table
|
|
for j in xrange(3):
|
|
grid[j][str(table.data[locationCol+j])] = True # remember coordinate along x,y,z
|
|
resolution = np.array([len(grid[0]),\
|
|
len(grid[1]),\
|
|
len(grid[2]),],'i') # resolution is number of distinct coordinates found
|
|
dimension = resolution/np.maximum(np.ones(3,'d'),resolution-1.0)* \
|
|
np.array([max(map(float,grid[0].keys()))-min(map(float,grid[0].keys())),\
|
|
max(map(float,grid[1].keys()))-min(map(float,grid[1].keys())),\
|
|
max(map(float,grid[2].keys()))-min(map(float,grid[2].keys())),\
|
|
],'d') # dimension from bounding box, corrected for cell-centeredness
|
|
if resolution[2] == 1:
|
|
dimension[2] = min(dimension[:2]/resolution[:2])
|
|
N = resolution.prod()
|
|
|
|
# --------------- figure out columns to process --------------------------------------------------
|
|
active = defaultdict(list)
|
|
column = defaultdict(dict)
|
|
values = defaultdict(dict)
|
|
curl = defaultdict(dict)
|
|
|
|
for datatype,info in datainfo.items():
|
|
for label in info['label']:
|
|
key = '1_%s'%label
|
|
if key not in table.labels:
|
|
file['croak'].write('column %s not found...\n'%key)
|
|
else:
|
|
active[datatype].append(label)
|
|
column[datatype][label] = table.labels.index(key) # remember columns of requested data
|
|
values[datatype][label] = np.array([0.0 for i in xrange(N*datainfo[datatype]['len'])]).\
|
|
reshape(list(resolution)+[datainfo[datatype]['len']//3,3])
|
|
curl[datatype][label] = np.array([0.0 for i in xrange(N*datainfo[datatype]['len'])]).\
|
|
reshape(list(resolution)+[datainfo[datatype]['len']//3,3])
|
|
|
|
# ------------------------------------------ assemble header ---------------------------------------
|
|
for datatype,labels in active.items(): # loop over vector,tensor
|
|
for label in labels:
|
|
table.labels_append(['%i_curlFFT(%s)'%(i+1,label)
|
|
for i in xrange(datainfo[datatype]['len'])]) # extend ASCII header with new labels
|
|
table.head_write()
|
|
|
|
# ------------------------------------------ read value field --------------------------------------
|
|
table.data_rewind()
|
|
idx = 0
|
|
while table.data_read(): # read next data line of ASCII table
|
|
(x,y,z) = damask.util.gridLocation(idx,resolution) # figure out (x,y,z) position from line count
|
|
idx += 1
|
|
for datatype,labels in active.items(): # loop over vector,tensor
|
|
for label in labels: # loop over all requested curls
|
|
values[datatype][label][x,y,z] = np.array(
|
|
map(float,table.data[column[datatype][label]:
|
|
column[datatype][label]+datainfo[datatype]['len']]),'d') \
|
|
.reshape(datainfo[datatype]['len']//3,3)
|
|
|
|
# ------------------------------------------ process value field -----------------------------------
|
|
for datatype,labels in active.items(): # loop over vector,tensor
|
|
for label in labels: # loop over all requested curls
|
|
curl[datatype][label] = damask.core.math.curlFFT(dimension,values[datatype][label])
|
|
|
|
# ------------------------------------------ process data ---------------------------------------
|
|
table.data_rewind()
|
|
idx = 0
|
|
outputAlive = True
|
|
while outputAlive and table.data_read(): # read next data line of ASCII table
|
|
(x,y,z) = damask.util.gridLocation(idx,resolution) # figure out (x,y,z) position from line count
|
|
idx += 1
|
|
for datatype,labels in active.items(): # loop over vector,tensor
|
|
for label in labels: # loop over all requested norms
|
|
table.data_append(list(curl[datatype][label][x,y,z].reshape(datainfo[datatype]['len'])))
|
|
outputAlive = table.data_write() # output processed line
|
|
|
|
# ------------------------------------------ output result ---------------------------------------
|
|
outputAlive and table.output_flush() # just in case of buffered ASCII table
|
|
|
|
file['input'].close() # close input ASCII table (works for stdin)
|
|
file['output'].close() # close output ASCII table (works for stdout)
|
|
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
|