added thermal and damage modules as examples of multi physics modules. only works with new state layout and still under testing.

damage_none: does nothing
damage_gradient: interacts with solver to solve gradient damage problems

thermal_none: does nothing
thermai_adiabatic: local heating only
thermal_conduction: interacts with conduction solver to solve coupled heat transfer problems
This commit is contained in:
Pratheek Shanthraj 2014-06-24 22:59:16 +00:00
parent 0c66204904
commit 5d88a78206
7 changed files with 1776 additions and 0 deletions

View File

@ -0,0 +1,270 @@
!--------------------------------------------------------------------------------------------------
! $Id: constitutive_damage.f90 3205 2014-06-17 06:54:49Z MPIE\m.diehl $
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @brief damage internal microstructure state
!--------------------------------------------------------------------------------------------------
module constitutive_damage
use prec, only: &
pInt, &
pReal
implicit none
private
integer(pInt), public, dimension(:,:,:), allocatable :: &
constitutive_damage_sizePostResults !< size of postResults array per grain
integer(pInt), public, protected :: &
constitutive_damage_maxSizePostResults, &
constitutive_damage_maxSizeDotState
public :: &
constitutive_damage_init, &
constitutive_damage_microstructure, &
constitutive_damage_collectDotState, &
constitutive_damage_collectDeltaState, &
constitutive_damage_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates arrays pointing to array of the various constitutive modules
!--------------------------------------------------------------------------------------------------
subroutine constitutive_damage_init
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use IO, only: &
IO_open_file, &
IO_open_jobFile_stat, &
IO_write_jobFile, &
IO_timeStamp
use mesh, only: &
mesh_maxNips, &
mesh_NcpElems, &
mesh_element, &
FE_Nips, &
FE_geomtype
use material, only: &
material_phase, &
material_Nphase, &
material_localFileExt, &
material_configFile, &
phase_name, &
phase_damage, &
phase_damageInstance, &
phase_Noutput, &
homogenization_Ngrains, &
homogenization_maxNgrains, &
damageState, &
DAMAGE_none_ID, &
DAMAGE_NONE_label, &
DAMAGE_gradient_ID, &
DAMAGE_GRADIENT_label
use damage_none
use damage_gradient
implicit none
integer(pInt), parameter :: FILEUNIT = 200_pInt
integer(pInt) :: &
g, & !< grain number
i, & !< integration point number
e, & !< element number
cMax, & !< maximum number of grains
iMax, & !< maximum number of integration points
eMax, & !< maximum number of elements
phase, &
s, &
p, &
instance,&
myNgrains
integer(pInt), dimension(:,:), pointer :: thisSize
logical :: knownDamage
character(len=64), dimension(:,:), pointer :: thisOutput
character(len=32) :: outputName !< name of output, intermediate fix until HDF5 output is ready
!--------------------------------------------------------------------------------------------------
! parse plasticities from config file
if (.not. IO_open_jobFile_stat(FILEUNIT,material_localFileExt)) & ! no local material configuration present...
call IO_open_file(FILEUNIT,material_configFile) ! ... open material.config file
if (any(phase_damage == DAMAGE_none_ID)) call damage_none_init(FILEUNIT)
if (any(phase_damage == DAMAGE_gradient_ID)) call damage_gradient_init(FILEUNIT)
close(FILEUNIT)
write(6,'(/,a)') ' <<<+- constitutive_damage init -+>>>'
write(6,'(a)') ' $Id: constitutive_damage.f90 3205 2014-06-17 06:54:49Z MPIE\m.diehl $'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
!--------------------------------------------------------------------------------------------------
! write description file for constitutive phase output
call IO_write_jobFile(FILEUNIT,'outputDamage')
do phase = 1_pInt,material_Nphase
instance = phase_damageInstance(phase) ! which instance of a plasticity is present phase
knownDamage = .true.
select case(phase_damage(phase)) ! split per constititution
case (DAMAGE_none_ID)
outputName = DAMAGE_NONE_label
thisOutput => null()
thisSize => null()
case (DAMAGE_gradient_ID)
outputName = DAMAGE_GRADIENT_label
thisOutput => damage_gradient_output
thisSize => damage_gradient_sizePostResult
case default
knownDamage = .false.
end select
write(FILEUNIT,'(/,a,/)') '['//trim(phase_name(phase))//']'
if (knownDamage) then
write(FILEUNIT,'(a)') '(damage)'//char(9)//trim(outputName)
if (phase_damage(phase) /= DAMAGE_none_ID) then
do e = 1_pInt,phase_Noutput(phase)
write(FILEUNIT,'(a,i4)') trim(thisOutput(e,instance))//char(9),thisSize(e,instance)
enddo
endif
endif
enddo
close(FILEUNIT)
!--------------------------------------------------------------------------------------------------
! allocation of states
cMax = homogenization_maxNgrains
iMax = mesh_maxNips
eMax = mesh_NcpElems
allocate(constitutive_damage_sizePostResults(cMax,iMax,eMax), source=0_pInt)
ElemLoop:do e = 1_pInt,mesh_NcpElems ! loop over elements
myNgrains = homogenization_Ngrains(mesh_element(3,e))
IPloop:do i = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,e))) ! loop over IPs
GrainLoop:do g = 1_pInt,myNgrains ! loop over grains
phase = material_phase(g,i,e)
instance = phase_damageInstance(phase)
select case(phase_damage(phase))
case (DAMAGE_gradient_ID)
constitutive_damage_sizePostResults(g,i,e) = damage_gradient_sizePostResults(instance)
end select
enddo GrainLoop
enddo IPloop
enddo ElemLoop
constitutive_damage_maxSizePostResults = maxval(constitutive_damage_sizePostResults)
constitutive_damage_maxSizeDotState = 0_pInt
do p = 1, size(damageState)
constitutive_damage_maxSizeDotState = max(constitutive_damage_maxSizeDotState, damageState(p)%sizeDotState)
enddo
end subroutine constitutive_damage_init
!--------------------------------------------------------------------------------------------------
!> @brief calls microstructure function of the different constitutive models
!--------------------------------------------------------------------------------------------------
subroutine constitutive_damage_microstructure(Tstar_v, Fe, ipc, ip, el)
use material, only: &
material_phase, &
phase_damage, &
DAMAGE_gradient_ID
use damage_gradient, only: &
damage_gradient_microstructure
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(in), dimension(6) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor (Mandel)
real(pReal), intent(in), dimension(3,3) :: &
Fe
select case (phase_damage(material_phase(ipc,ip,el)))
case (DAMAGE_gradient_ID)
call damage_gradient_microstructure(Tstar_v, Fe, ipc, ip, el)
end select
end subroutine constitutive_damage_microstructure
!--------------------------------------------------------------------------------------------------
!> @brief contains the constitutive equation for calculating the rate of change of microstructure
!--------------------------------------------------------------------------------------------------
subroutine constitutive_damage_collectDotState(Tstar_v, Lp, ipc, ip, el)
use material, only: &
material_phase, &
phase_damage, &
DAMAGE_gradient_ID
use damage_gradient, only: &
damage_gradient_dotState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(in), dimension(6) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor (Mandel)
real(pReal), intent(in), dimension(3,3) :: &
Lp
select case (phase_damage(material_phase(ipc,ip,el)))
case (DAMAGE_gradient_ID)
call damage_gradient_dotState(Tstar_v, Lp, ipc, ip, el)
end select
end subroutine constitutive_damage_collectDotState
!--------------------------------------------------------------------------------------------------
!> @brief for constitutive models having an instantaneous change of state (so far, only nonlocal)
!> will return false if delta state is not needed/supported by the constitutive model
!--------------------------------------------------------------------------------------------------
logical function constitutive_damage_collectDeltaState(ipc, ip, el)
use material, only: &
material_phase, &
phase_damage
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
select case (phase_damage(material_phase(ipc,ip,el)))
end select
constitutive_damage_collectDeltaState = .true.
end function constitutive_damage_collectDeltaState
!--------------------------------------------------------------------------------------------------
!> @brief returns array of constitutive results
!--------------------------------------------------------------------------------------------------
function constitutive_damage_postResults(ipc, ip, el)
use material, only: &
material_phase, &
phase_damage, &
DAMAGE_gradient_ID
use damage_gradient, only: &
damage_gradient_postResults
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), dimension(constitutive_damage_sizePostResults(ipc,ip,el)) :: &
constitutive_damage_postResults
constitutive_damage_postResults = 0.0_pReal
select case (phase_damage(material_phase(ipc,ip,el)))
case (DAMAGE_gradient_ID)
constitutive_damage_postResults = damage_gradient_postResults(ipc,ip,el)
end select
end function constitutive_damage_postResults
end module constitutive_damage

View File

@ -0,0 +1,266 @@
!--------------------------------------------------------------------------------------------------
! $Id: constitutive_thermal.f90 3205 2014-06-17 06:54:49Z MPIE\m.diehl $
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @brief thermal internal microstructure state
!--------------------------------------------------------------------------------------------------
module constitutive_thermal
use prec, only: &
pInt, &
pReal
implicit none
private
integer(pInt), public, dimension(:,:,:), allocatable :: &
constitutive_thermal_sizePostResults !< size of postResults array per grain
integer(pInt), public, protected :: &
constitutive_thermal_maxSizePostResults, &
constitutive_thermal_maxSizeDotState
public :: &
constitutive_thermal_init, &
constitutive_thermal_microstructure, &
constitutive_thermal_collectDotState, &
constitutive_thermal_collectDeltaState, &
constitutive_thermal_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates arrays pointing to array of the various constitutive modules
!--------------------------------------------------------------------------------------------------
subroutine constitutive_thermal_init
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use IO, only: &
IO_open_file, &
IO_open_jobFile_stat, &
IO_write_jobFile, &
IO_timeStamp
use mesh, only: &
mesh_maxNips, &
mesh_NcpElems, &
mesh_element, &
FE_Nips, &
FE_geomtype
use material, only: &
material_phase, &
material_Nphase, &
material_localFileExt, &
material_configFile, &
phase_name, &
phase_thermal, &
phase_thermalInstance, &
phase_Noutput, &
homogenization_Ngrains, &
homogenization_maxNgrains, &
thermalState, &
THERMAL_none_ID, &
THERMAL_NONE_label, &
THERMAL_conduction_ID, &
THERMAL_CONDUCTION_label
use thermal_none
use thermal_conduction
implicit none
integer(pInt), parameter :: FILEUNIT = 200_pInt
integer(pInt) :: &
g, & !< grain number
i, & !< integration point number
e, & !< element number
cMax, & !< maximum number of grains
iMax, & !< maximum number of integration points
eMax, & !< maximum number of elements
phase, &
s, &
p, &
instance,&
myNgrains
integer(pInt), dimension(:,:), pointer :: thisSize
logical :: knownThermal
character(len=64), dimension(:,:), pointer :: thisOutput
character(len=32) :: outputName !< name of output, intermediate fix until HDF5 output is ready
!--------------------------------------------------------------------------------------------------
! parse from config file
if (.not. IO_open_jobFile_stat(FILEUNIT,material_localFileExt)) & ! no local material configuration present...
call IO_open_file(FILEUNIT,material_configFile) ! ... open material.config file
if (any(phase_thermal == THERMAL_none_ID)) call thermal_none_init(FILEUNIT)
if (any(phase_thermal == THERMAL_conduction_ID)) call thermal_conduction_init(FILEUNIT)
close(FILEUNIT)
write(6,'(/,a)') ' <<<+- constitutive_thermal init -+>>>'
write(6,'(a)') ' $Id: constitutive_thermal.f90 3205 2014-06-17 06:54:49Z MPIE\m.diehl $'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
!--------------------------------------------------------------------------------------------------
! write description file for constitutive phase output
call IO_write_jobFile(FILEUNIT,'outputThermal')
do phase = 1_pInt,material_Nphase
instance = phase_thermalInstance(phase) ! which instance is present phase
knownThermal = .true.
select case(phase_thermal(phase)) ! split per constititution
case (THERMAL_none_ID)
outputName = THERMAL_NONE_label
thisOutput => null()
thisSize => null()
case (THERMAL_conduction_ID)
outputName = THERMAL_CONDUCTION_label
thisOutput => thermal_conduction_output
thisSize => thermal_conduction_sizePostResult
case default
knownThermal = .false.
end select
write(FILEUNIT,'(/,a,/)') '['//trim(phase_name(phase))//']'
if (knownThermal) then
write(FILEUNIT,'(a)') '(thermal)'//char(9)//trim(outputName)
if (phase_thermal(phase) /= THERMAL_none_ID) then
do e = 1_pInt,phase_Noutput(phase)
write(FILEUNIT,'(a,i4)') trim(thisOutput(e,instance))//char(9),thisSize(e,instance)
enddo
endif
endif
enddo
close(FILEUNIT)
!--------------------------------------------------------------------------------------------------
! allocation of states
cMax = homogenization_maxNgrains
iMax = mesh_maxNips
eMax = mesh_NcpElems
allocate(constitutive_thermal_sizePostResults(cMax,iMax,eMax), source=0_pInt)
ElemLoop:do e = 1_pInt,mesh_NcpElems ! loop over elements
myNgrains = homogenization_Ngrains(mesh_element(3,e))
IPloop:do i = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,e))) ! loop over IPs
GrainLoop:do g = 1_pInt,myNgrains ! loop over grains
phase = material_phase(g,i,e)
instance = phase_thermalInstance(phase)
select case(phase_thermal(phase))
case (THERMAL_conduction_ID)
constitutive_thermal_sizePostResults(g,i,e) = thermal_conduction_sizePostResults(instance)
end select
enddo GrainLoop
enddo IPloop
enddo ElemLoop
constitutive_thermal_maxSizePostResults = maxval(constitutive_thermal_sizePostResults)
constitutive_thermal_maxSizeDotState = 0_pInt
do p = 1, size(thermalState)
constitutive_thermal_maxSizeDotState = max(constitutive_thermal_maxSizeDotState, thermalState(p)%sizeDotState)
enddo
end subroutine constitutive_thermal_init
!--------------------------------------------------------------------------------------------------
!> @brief calls microstructure function of the different constitutive models
!--------------------------------------------------------------------------------------------------
subroutine constitutive_thermal_microstructure(Tstar_v, Lp, ipc, ip, el)
use material, only: &
material_phase, &
phase_thermal, &
THERMAL_conduction_ID
use thermal_conduction, only: &
thermal_conduction_microstructure
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(in), dimension(6) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor (Mandel)
real(pReal), intent(in), dimension(3,3) :: &
Lp
select case (phase_thermal(material_phase(ipc,ip,el)))
case (THERMAL_conduction_ID)
call thermal_conduction_microstructure(Tstar_v, Lp, ipc, ip, el)
end select
end subroutine constitutive_thermal_microstructure
!--------------------------------------------------------------------------------------------------
!> @brief contains the constitutive equation for calculating the rate of change of microstructure
!--------------------------------------------------------------------------------------------------
subroutine constitutive_thermal_collectDotState(Tstar_v, Lp, ipc, ip, el)
use material, only: &
material_phase, &
phase_thermal, &
THERMAL_adiabatic_ID
! use thermal_conduction, only: &
! thermal_adiabatic_microstructure
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(in), dimension(6) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor (Mandel)
real(pReal), intent(in), dimension(3,3) :: &
Lp
select case (phase_thermal(material_phase(ipc,ip,el)))
case (THERMAL_adiabatic_ID)
! call thermal_adiabatic_dotState(Tstar_v, Lp, ipc, ip, el)
end select
end subroutine constitutive_thermal_collectDotState
!--------------------------------------------------------------------------------------------------
!> @brief for constitutive models having an instantaneous change of state (so far, only nonlocal)
!> will return false if delta state is not needed/supported by the constitutive model
!--------------------------------------------------------------------------------------------------
logical function constitutive_thermal_collectDeltaState(ipc, ip, el)
use material, only: &
material_phase, &
phase_thermal
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
select case (phase_thermal(material_phase(ipc,ip,el)))
end select
end function constitutive_thermal_collectDeltaState
!--------------------------------------------------------------------------------------------------
!> @brief returns array of constitutive results
!--------------------------------------------------------------------------------------------------
function constitutive_thermal_postResults(ipc, ip, el)
use material, only: &
material_phase, &
phase_thermal, &
THERMAL_conduction_ID
use thermal_conduction, only: &
thermal_conduction_postResults
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), dimension(constitutive_thermal_sizePostResults(ipc,ip,el)) :: &
constitutive_thermal_postResults
constitutive_thermal_postResults = 0.0_pReal
select case (phase_thermal(material_phase(ipc,ip,el)))
case (THERMAL_conduction_ID)
constitutive_thermal_postResults = thermal_conduction_postResults(ipc,ip,el)
end select
end function constitutive_thermal_postResults
end module constitutive_thermal

377
code/damage_gradient.f90 Normal file
View File

@ -0,0 +1,377 @@
!--------------------------------------------------------------------------------------------------
! $Id: damage_gradient.f90 3210 2014-06-17 15:24:44Z MPIE\m.diehl $
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine incoprorating dislocation and twinning physics
!> @details to be done
!--------------------------------------------------------------------------------------------------
module damage_gradient
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
damage_gradient_sizeDotState, & !< number of dotStates
damage_gradient_sizeState, & !< total number of microstructural state variables
damage_gradient_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
damage_gradient_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
damage_gradient_output !< name of each post result output
integer(pInt), dimension(:), allocatable, private :: &
damage_gradient_Noutput !< number of outputs per instance of this damage
real(pReal), dimension(:), allocatable, private :: &
damage_gradient_crack_mobility
enum, bind(c)
enumerator :: undefined_ID, &
local_damage_ID, &
gradient_damage_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
damage_gradient_outputID !< ID of each post result output
public :: &
damage_gradient_init, &
damage_gradient_stateInit, &
damage_gradient_aTolState, &
damage_gradient_microstructure, &
damage_gradient_dotState, &
damage_gradient_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine damage_gradient_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level,&
debug_constitutive,&
debug_levelBasic
use mesh, only: &
mesh_maxNips, &
mesh_NcpElems
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
homogenization_maxNgrains, &
phase_damage, &
phase_damageInstance, &
phase_Noutput, &
DAMAGE_GRADIENT_label, &
DAMAGE_gradient_ID, &
material_phase, &
damageState, &
MATERIAL_partPhase
use numerics,only: &
numerics_integrator
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), parameter :: MAXNCHUNKS = 7_pInt
integer(pInt), dimension(1+2*MAXNCHUNKS) :: positions
integer(pInt) :: maxNinstance,mySize=0_pInt,phase,instance,o
integer(pInt) :: sizeState, sizeDotState
integer(pInt) :: NofMyPhase
character(len=65536) :: &
tag = '', &
line = ''
write(6,'(/,a)') ' <<<+- damage_'//DAMAGE_GRADIENT_label//' init -+>>>'
write(6,'(a)') ' $Id: damage_gradient.f90 3210 2014-06-17 15:24:44Z MPIE\m.diehl $'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
maxNinstance = int(count(phase_damage == DAMAGE_gradient_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(damage_gradient_sizeDotState(maxNinstance), source=0_pInt)
allocate(damage_gradient_sizeState(maxNinstance), source=0_pInt)
allocate(damage_gradient_sizePostResults(maxNinstance), source=0_pInt)
allocate(damage_gradient_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt)
allocate(damage_gradient_output(maxval(phase_Noutput),maxNinstance))
damage_gradient_output = ''
allocate(damage_gradient_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID)
allocate(damage_gradient_Noutput(maxNinstance), source=0_pInt)
allocate(damage_gradient_crack_mobility(maxNinstance), source=0.0_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next phase section
phase = phase + 1_pInt ! advance phase section counter
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (phase_damage(phase) == DAMAGE_gradient_ID) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = phase_damageInstance(phase) ! which instance of my damage is present phase
positions = IO_stringPos(line,MAXNCHUNKS)
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,positions,2_pInt)))
case ('local_damage')
damage_gradient_outputID(damage_gradient_Noutput(instance),instance) = local_damage_ID
damage_gradient_Noutput(instance) = damage_gradient_Noutput(instance) + 1_pInt
damage_gradient_output(damage_gradient_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,positions,2_pInt))
case ('gradient_damage')
damage_gradient_outputID(damage_gradient_Noutput(instance),instance) = gradient_damage_ID
damage_gradient_Noutput(instance) = damage_gradient_Noutput(instance) + 1_pInt
damage_gradient_output(damage_gradient_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,positions,2_pInt))
end select
case ('crack_mobility')
damage_gradient_crack_mobility(instance) = IO_floatValue(line,positions,2_pInt)
end select
endif; endif
enddo parsingFile
initializeInstances: do phase = 1_pInt, size(phase_damage)
if (phase_damage(phase) == DAMAGE_gradient_ID) then
NofMyPhase=count(material_phase==phase)
instance = phase_damageInstance(phase)
damage_gradient_sizeDotState(instance) = 1_pInt
damage_gradient_sizeState(instance) = 3_pInt
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,damage_gradient_Noutput(instance)
select case(damage_gradient_outputID(o,instance))
case(local_damage_ID, &
gradient_damage_ID &
)
mySize = 1_pInt
end select
if (mySize > 0_pInt) then ! any meaningful output found
damage_gradient_sizePostResult(o,instance) = mySize
damage_gradient_sizePostResults(instance) = damage_gradient_sizePostResults(instance) + mySize
endif
enddo outputsLoop
! Determine size of state array
sizeDotState = damage_gradient_sizeDotState(instance)
sizeState = damage_gradient_sizeState (instance)
damageState(phase)%sizeState = sizeState
damageState(phase)%sizeDotState = sizeDotState
allocate(damageState(phase)%aTolState (sizeState), source=0.0_pReal)
allocate(damageState(phase)%state0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(damageState(phase)%partionedState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(damageState(phase)%subState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(damageState(phase)%state (sizeState,NofMyPhase), source=0.0_pReal)
allocate(damageState(phase)%state_backup (sizeState,NofMyPhase), source=0.0_pReal)
allocate(damageState(phase)%dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(damageState(phase)%deltaState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(damageState(phase)%dotState_backup (sizeDotState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 1_pInt)) then
allocate(damageState(phase)%previousDotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(damageState(phase)%previousDotState2 (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(damageState(phase)%RK4dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 5_pInt)) &
allocate(damageState(phase)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
call damage_gradient_stateInit(phase,instance)
call damage_gradient_aTolState(phase,instance)
endif
enddo initializeInstances
end subroutine damage_gradient_init
!--------------------------------------------------------------------------------------------------
!> @brief sets the relevant NEW state values for a given instance of this damage
!--------------------------------------------------------------------------------------------------
subroutine damage_gradient_stateInit(phase,instance)
use material, only: &
damageState
implicit none
integer(pInt), intent(in) :: instance !< number specifying the instance of the damage
integer(pInt), intent(in) :: phase !< number specifying the phase of the damage
real(pReal), dimension(damageState(phase)%sizeState) :: tempState
tempState(1) = 0.0_pReal
tempState(2:3) = 1.0_pReal
damageState(phase)%state = spread(tempState,2,size(damageState(phase)%state(1,:)))
damageState(phase)%state0 = damageState(phase)%state
damageState(phase)%partionedState0 = damageState(phase)%state
end subroutine damage_gradient_stateInit
!--------------------------------------------------------------------------------------------------
!> @brief sets the relevant state values for a given instance of this damage
!--------------------------------------------------------------------------------------------------
subroutine damage_gradient_aTolState(phase,instance)
use material, only: &
damageState
implicit none
integer(pInt), intent(in) :: &
phase, &
instance ! number specifying the current instance of the damage
real(pReal), dimension(damageState(phase)%sizeState) :: tempTol
tempTol = 0.0_pReal
damageState(phase)%aTolState = tempTol
end subroutine damage_gradient_aTolState
!--------------------------------------------------------------------------------------------------
!> @brief calculates derived quantities from state
!--------------------------------------------------------------------------------------------------
subroutine damage_gradient_microstructure(Tstar_v, Fe, ipc, ip, el)
use material, only: &
mappingConstitutive, &
phase_damageInstance, &
damageState
use mesh, only: &
charLength
use math, only: &
math_Mandel6to33, &
math_mul33x33, &
math_transpose33, &
math_I3
use lattice, only: &
lattice_surfaceEnergy33
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in), dimension(6) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor (Mandel)
real(pReal), intent(in), dimension(3,3) :: &
Fe
integer(pInt) :: &
instance, phase, constituent
real(pReal) :: &
damage
phase = mappingConstitutive(2,ipc,ip,el)
constituent = mappingConstitutive(1,ipc,ip,el)
instance = phase_damageInstance(phase)
damage = damageState(phase)%state(3,constituent)*damageState(phase)%state(3,constituent)
damageState(phase)%state(2,constituent) = &
min(1.0_pReal, &
2.0_pReal*charLength*maxval(lattice_surfaceEnergy33(1:3,1:3,phase))/ &
(0.125_pReal*sum(math_Mandel6to33(Tstar_v/damage)*(math_mul33x33(math_transpose33(Fe),Fe)-math_I3)) + &
0.5_pReal*damageState(phase)%state(1,constituent)) &
)
end subroutine damage_gradient_microstructure
!--------------------------------------------------------------------------------------------------
!> @brief calculates derived quantities from state
!--------------------------------------------------------------------------------------------------
subroutine damage_gradient_dotState(Tstar_v, Lp, ipc, ip, el)
use material, only: &
mappingConstitutive, &
phase_damageInstance, &
damageState
use math, only: &
math_Mandel6to33
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in), dimension(6) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor (Mandel)
real(pReal), intent(in), dimension(3,3) :: &
Lp
integer(pInt) :: &
instance, phase, constituent
phase = mappingConstitutive(2,ipc,ip,el)
constituent = mappingConstitutive(1,ipc,ip,el)
instance = phase_damageInstance(phase)
damageState(phase)%dotState(1,constituent) = &
sum(abs(math_Mandel6to33(Tstar_v)*Lp))
end subroutine damage_gradient_dotState
!--------------------------------------------------------------------------------------------------
!> @brief return array of constitutive results
!--------------------------------------------------------------------------------------------------
function damage_gradient_postResults(ipc,ip,el)
use material, only: &
mappingConstitutive, &
phase_damageInstance,&
damageState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(damage_gradient_sizePostResults(phase_damageInstance(mappingConstitutive(2,ipc,ip,el)))) :: &
damage_gradient_postResults
integer(pInt) :: &
instance, phase, constituent, o, c
phase = mappingConstitutive(2,ipc,ip,el)
constituent = mappingConstitutive(1,ipc,ip,el)
instance = phase_damageInstance(phase)
c = 0_pInt
damage_gradient_postResults = 0.0_pReal
do o = 1_pInt,damage_gradient_Noutput(instance)
select case(damage_gradient_outputID(o,instance))
case (local_damage_ID)
damage_gradient_postResults(c+1_pInt) = damageState(phase)%state(2,constituent)
c = c + 1
case (gradient_damage_ID)
damage_gradient_postResults(c+1_pInt) = damageState(phase)%state(3,constituent)
c = c + 1
end select
enddo
end function damage_gradient_postResults
end module damage_gradient

106
code/damage_none.f90 Normal file
View File

@ -0,0 +1,106 @@
!--------------------------------------------------------------------------------------------------
! $Id: damage_none.f90 3148 2014-05-27 14:46:03Z MPIE\m.diehl $
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for purely elastic material
!--------------------------------------------------------------------------------------------------
module damage_none
use prec, only: &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
damage_none_sizeDotState, &
damage_none_sizeState, &
damage_none_sizePostResults
integer(pInt), dimension(:,:), allocatable, target, public :: &
damage_none_sizePostResult !< size of each post result output
public :: &
damage_none_init
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine damage_none_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level, &
debug_constitutive, &
debug_levelBasic
use IO, only: &
IO_timeStamp
use numerics, only: &
numerics_integrator
use material, only: &
phase_damage, &
phase_Noutput, &
DAMAGE_NONE_label, &
material_phase, &
damageState, &
DAMAGE_NONE_ID, &
MATERIAL_partPhase
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt) :: &
maxNinstance, &
phase, &
NofMyPhase, &
sizeState, &
sizeDotState
write(6,'(/,a)') ' <<<+- damage_'//DAMAGE_NONE_label//' init -+>>>'
write(6,'(a)') ' $Id: damage_none.f90 3148 2014-05-27 14:46:03Z MPIE\m.diehl $'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
maxNinstance = int(count(phase_damage == DAMAGE_NONE_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
#ifdef NEWSTATE
initializeInstances: do phase = 1_pInt, size(phase_damage)
NofMyPhase=count(material_phase==phase)
if (phase_damage(phase) == DAMAGE_none_ID .and. NofMyPhase/=0) then
sizeState = 0_pInt
damageState(phase)%sizeState = sizeState
sizeDotState = sizeState
damageState(phase)%sizeDotState = sizeDotState
allocate(damageState(phase)%state0 (sizeState,NofMyPhase))
allocate(damageState(phase)%partionedState0(sizeState,NofMyPhase))
allocate(damageState(phase)%subState0 (sizeState,NofMyPhase))
allocate(damageState(phase)%state (sizeState,NofMyPhase))
allocate(damageState(phase)%state_backup (sizeState,NofMyPhase))
allocate(damageState(phase)%aTolState (NofMyPhase))
allocate(damageState(phase)%dotState (sizeDotState,NofMyPhase))
allocate(damageState(phase)%dotState_backup(sizeDotState,NofMyPhase))
if (any(numerics_integrator == 1_pInt)) then
allocate(damageState(phase)%previousDotState (sizeDotState,NofMyPhase))
allocate(damageState(phase)%previousDotState2 (sizeDotState,NofMyPhase))
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(damageState(phase)%RK4dotState (sizeDotState,NofMyPhase))
if (any(numerics_integrator == 5_pInt)) &
allocate(damageState(phase)%RKCK45dotState (6,sizeDotState,NofMyPhase))
endif
enddo initializeInstances
#else
allocate(damage_none_sizeDotState(maxNinstance), source=1_pInt)
allocate(damage_none_sizeState(maxNinstance), source=1_pInt)
#endif
allocate(damage_none_sizePostResults(maxNinstance), source=0_pInt)
end subroutine damage_none_init
end module damage_none

326
code/thermal_adiabatic.f90 Normal file
View File

@ -0,0 +1,326 @@
!--------------------------------------------------------------------------------------------------
! $Id: thermal_adiabatic.f90 3210 2014-06-17 15:24:44Z MPIE\m.diehl $
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine incoprorating dislocation and twinning physics
!> @details to be done
!--------------------------------------------------------------------------------------------------
module thermal_adiabatic
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
thermal_adiabatic_sizeDotState, & !< number of dotStates
thermal_adiabatic_sizeState, & !< total number of microstructural state variables
thermal_adiabatic_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
thermal_adiabatic_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
thermal_adiabatic_output !< name of each post result output
integer(pInt), dimension(:), allocatable, private :: &
thermal_adiabatic_Noutput !< number of outputs per instance of this damage
real(pReal), dimension(:), allocatable, private :: &
thermal_adiabatic_specific_heat, &
thermal_adiabatic_density
enum, bind(c)
enumerator :: undefined_ID, &
temperature_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
thermal_adiabatic_outputID !< ID of each post result output
public :: &
thermal_adiabatic_init, &
thermal_adiabatic_stateInit, &
thermal_adiabatic_aTolState, &
thermal_adiabatic_dotState, &
thermal_adiabatic_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine thermal_adiabatic_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level,&
debug_constitutive,&
debug_levelBasic
use mesh, only: &
mesh_maxNips, &
mesh_NcpElems
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
homogenization_maxNgrains, &
phase_thermal, &
phase_thermalInstance, &
phase_Noutput, &
THERMAL_ADIABATIC_label, &
THERMAL_adiabatic_ID, &
material_phase, &
thermalState, &
MATERIAL_partPhase
use numerics,only: &
numerics_integrator
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), parameter :: MAXNCHUNKS = 7_pInt
integer(pInt), dimension(1+2*MAXNCHUNKS) :: positions
integer(pInt) :: maxNinstance,mySize=0_pInt,phase,instance,o
integer(pInt) :: sizeState, sizeDotState
integer(pInt) :: NofMyPhase
character(len=65536) :: &
tag = '', &
line = ''
write(6,'(/,a)') ' <<<+- thermal_'//THERMAL_ADIABATIC_label//' init -+>>>'
write(6,'(a)') ' $Id: thermal_adiabatic.f90 3210 2014-06-17 15:24:44Z MPIE\m.diehl $'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
maxNinstance = int(count(phase_thermal == THERMAL_adiabatic_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(thermal_adiabatic_sizeDotState(maxNinstance), source=0_pInt)
allocate(thermal_adiabatic_sizeState(maxNinstance), source=0_pInt)
allocate(thermal_adiabatic_sizePostResults(maxNinstance), source=0_pInt)
allocate(thermal_adiabatic_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt)
allocate(thermal_adiabatic_output(maxval(phase_Noutput),maxNinstance))
thermal_adiabatic_output = ''
allocate(thermal_adiabatic_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID)
allocate(thermal_adiabatic_Noutput(maxNinstance), source=0_pInt)
allocate(thermal_adiabatic_specific_heat(maxNinstance), source=0.0_pReal)
allocate(thermal_adiabatic_density(maxNinstance), source=0.0_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next phase section
phase = phase + 1_pInt ! advance phase section counter
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (phase_thermal(phase) == THERMAL_adiabatic_ID) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = phase_thermalInstance(phase) ! which instance of my thermal is present phase
positions = IO_stringPos(line,MAXNCHUNKS)
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,positions,2_pInt)))
case ('temperature')
thermal_adiabatic_outputID(thermal_adiabatic_Noutput(instance),instance) = temperature_ID
thermal_adiabatic_Noutput(instance) = thermal_adiabatic_Noutput(instance) + 1_pInt
thermal_adiabatic_output(thermal_adiabatic_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,positions,2_pInt))
end select
case ('specific_heat')
thermal_adiabatic_specific_heat(instance) = IO_floatValue(line,positions,2_pInt)
case ('density')
thermal_adiabatic_density(instance) = IO_floatValue(line,positions,2_pInt)
end select
endif; endif
enddo parsingFile
initializeInstances: do phase = 1_pInt, size(phase_thermal)
if (phase_thermal(phase) == THERMAL_adiabatic_ID) then
NofMyPhase=count(material_phase==phase)
instance = phase_thermalInstance(phase)
thermal_adiabatic_sizeDotState(instance) = 1_pInt
thermal_adiabatic_sizeState(instance) = 1_pInt
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,thermal_adiabatic_Noutput(instance)
select case(thermal_adiabatic_outputID(o,instance))
case(temperature_ID)
mySize = 1_pInt
end select
if (mySize > 0_pInt) then ! any meaningful output found
thermal_adiabatic_sizePostResult(o,instance) = mySize
thermal_adiabatic_sizePostResults(instance) = thermal_adiabatic_sizePostResults(instance) + mySize
endif
enddo outputsLoop
! Determine size of state array
sizeDotState = thermal_adiabatic_sizeDotState(instance)
sizeState = thermal_adiabatic_sizeState (instance)
thermalState(phase)%sizeState = sizeState
thermalState(phase)%sizeDotState = sizeDotState
allocate(thermalState(phase)%aTolState (sizeState), source=0.0_pReal)
allocate(thermalState(phase)%state0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%partionedState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%subState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%state (sizeState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%state_backup (sizeState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%deltaState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%dotState_backup (sizeDotState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 1_pInt)) then
allocate(thermalState(phase)%previousDotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%previousDotState2 (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(thermalState(phase)%RK4dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 5_pInt)) &
allocate(thermalState(phase)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
call thermal_adiabatic_stateInit(phase,instance)
call thermal_adiabatic_aTolState(phase,instance)
endif
enddo initializeInstances
end subroutine thermal_adiabatic_init
!--------------------------------------------------------------------------------------------------
!> @brief sets the relevant NEW state values for a given instance of this thermal
!--------------------------------------------------------------------------------------------------
subroutine thermal_adiabatic_stateInit(phase,instance)
use material, only: &
thermalState
use lattice, only: &
lattice_referenceTemperature
implicit none
integer(pInt), intent(in) :: instance !< number specifying the instance of the thermal
integer(pInt), intent(in) :: phase !< number specifying the phase of the thermal
real(pReal), dimension(thermalState(phase)%sizeState) :: tempState
tempState(1) = lattice_referenceTemperature(phase)
thermalState(phase)%state = spread(tempState,2,size(thermalState(phase)%state(1,:)))
thermalState(phase)%state0 = thermalState(phase)%state
thermalState(phase)%partionedState0 = thermalState(phase)%state
end subroutine thermal_adiabatic_stateInit
!--------------------------------------------------------------------------------------------------
!> @brief sets the relevant state values for a given instance of this thermal
!--------------------------------------------------------------------------------------------------
subroutine thermal_adiabatic_aTolState(phase,instance)
use material, only: &
thermalState
implicit none
integer(pInt), intent(in) :: &
phase, &
instance ! number specifying the current instance of the thermal
real(pReal), dimension(thermalState(phase)%sizeState) :: tempTol
tempTol = 0.0_pReal
thermalState(phase)%aTolState = tempTol
end subroutine thermal_adiabatic_aTolState
!--------------------------------------------------------------------------------------------------
!> @brief calculates derived quantities from state
!--------------------------------------------------------------------------------------------------
subroutine thermal_adiabatic_dotState(Tstar_v, Lp, ipc, ip, el)
use material, only: &
mappingConstitutive, &
phase_thermalInstance, &
thermalState
use math, only: &
math_Mandel6to33
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in), dimension(6) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor (Mandel)
real(pReal), intent(in), dimension(3,3) :: &
Lp
integer(pInt) :: &
instance, phase, constituent
phase = mappingConstitutive(2,ipc,ip,el)
constituent = mappingConstitutive(1,ipc,ip,el)
instance = phase_thermalInstance(phase)
thermalState(phase)%dotState(1,constituent) = &
0.95_pReal &
* sum(abs(math_Mandel6to33(Tstar_v)*Lp)) &
/ (thermal_adiabatic_density(phase)*thermal_adiabatic_specific_heat(phase))
end subroutine thermal_adiabatic_dotState
!--------------------------------------------------------------------------------------------------
!> @brief return array of constitutive results
!--------------------------------------------------------------------------------------------------
function thermal_adiabatic_postResults(ipc,ip,el)
use material, only: &
mappingConstitutive, &
phase_thermalInstance, &
thermalState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(thermal_adiabatic_sizePostResults(phase_thermalInstance(mappingConstitutive(2,ipc,ip,el)))) :: &
thermal_adiabatic_postResults
integer(pInt) :: &
instance, phase, constituent, o, c
phase = mappingConstitutive(2,ipc,ip,el)
constituent = mappingConstitutive(1,ipc,ip,el)
instance = phase_thermalInstance(phase)
c = 0_pInt
thermal_adiabatic_postResults = 0.0_pReal
do o = 1_pInt,thermal_adiabatic_Noutput(instance)
select case(thermal_adiabatic_outputID(o,instance))
case (temperature_ID)
thermal_adiabatic_postResults(c+1_pInt) = thermalState(phase)%state(1,constituent)
c = c + 1
end select
enddo
end function thermal_adiabatic_postResults
end module thermal_adiabatic

325
code/thermal_conduction.f90 Normal file
View File

@ -0,0 +1,325 @@
!--------------------------------------------------------------------------------------------------
! $Id: thermal_conduction.f90 3210 2014-06-17 15:24:44Z MPIE\m.diehl $
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine incoprorating dislocation and twinning physics
!> @details to be done
!--------------------------------------------------------------------------------------------------
module thermal_conduction
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
thermal_conduction_sizeDotState, & !< number of dotStates
thermal_conduction_sizeState, & !< total number of microstructural state variables
thermal_conduction_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
thermal_conduction_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
thermal_conduction_output !< name of each post result output
integer(pInt), dimension(:), allocatable, private :: &
thermal_conduction_Noutput !< number of outputs per instance of this damage
real(pReal), dimension(:), allocatable, private :: &
thermal_conduction_specific_heat, &
thermal_conduction_density
enum, bind(c)
enumerator :: undefined_ID, &
temperature_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
thermal_conduction_outputID !< ID of each post result output
public :: &
thermal_conduction_init, &
thermal_conduction_stateInit, &
thermal_conduction_aTolState, &
thermal_conduction_microstructure, &
thermal_conduction_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level,&
debug_constitutive,&
debug_levelBasic
use mesh, only: &
mesh_maxNips, &
mesh_NcpElems
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
homogenization_maxNgrains, &
phase_thermal, &
phase_thermalInstance, &
phase_Noutput, &
THERMAL_CONDUCTION_label, &
THERMAL_conduction_ID, &
material_phase, &
thermalState, &
MATERIAL_partPhase
use numerics,only: &
numerics_integrator
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), parameter :: MAXNCHUNKS = 7_pInt
integer(pInt), dimension(1+2*MAXNCHUNKS) :: positions
integer(pInt) :: maxNinstance,mySize=0_pInt,phase,instance,o
integer(pInt) :: sizeState, sizeDotState
integer(pInt) :: NofMyPhase
character(len=65536) :: &
tag = '', &
line = ''
write(6,'(/,a)') ' <<<+- thermal_'//THERMAL_CONDUCTION_label//' init -+>>>'
write(6,'(a)') ' $Id: thermal_conduction.f90 3210 2014-06-17 15:24:44Z MPIE\m.diehl $'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
maxNinstance = int(count(phase_thermal == THERMAL_conduction_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(thermal_conduction_sizeDotState(maxNinstance), source=0_pInt)
allocate(thermal_conduction_sizeState(maxNinstance), source=0_pInt)
allocate(thermal_conduction_sizePostResults(maxNinstance), source=0_pInt)
allocate(thermal_conduction_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt)
allocate(thermal_conduction_output(maxval(phase_Noutput),maxNinstance))
thermal_conduction_output = ''
allocate(thermal_conduction_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID)
allocate(thermal_conduction_Noutput(maxNinstance), source=0_pInt)
allocate(thermal_conduction_specific_heat(maxNinstance), source=0.0_pReal)
allocate(thermal_conduction_density(maxNinstance), source=0.0_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next phase section
phase = phase + 1_pInt ! advance phase section counter
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (phase_thermal(phase) == THERMAL_conduction_ID) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = phase_thermalInstance(phase) ! which instance of my thermal is present phase
positions = IO_stringPos(line,MAXNCHUNKS)
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,positions,2_pInt)))
case ('temperature')
thermal_conduction_outputID(thermal_conduction_Noutput(instance),instance) = temperature_ID
thermal_conduction_Noutput(instance) = thermal_conduction_Noutput(instance) + 1_pInt
thermal_conduction_output(thermal_conduction_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,positions,2_pInt))
end select
case ('specific_heat')
thermal_conduction_specific_heat(instance) = IO_floatValue(line,positions,2_pInt)
case ('density')
thermal_conduction_density(instance) = IO_floatValue(line,positions,2_pInt)
end select
endif; endif
enddo parsingFile
initializeInstances: do phase = 1_pInt, size(phase_thermal)
if (phase_thermal(phase) == THERMAL_conduction_ID) then
NofMyPhase=count(material_phase==phase)
instance = phase_thermalInstance(phase)
thermal_conduction_sizeDotState(instance) = 0_pInt
thermal_conduction_sizeState(instance) = 2_pInt
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,thermal_conduction_Noutput(instance)
select case(thermal_conduction_outputID(o,instance))
case(temperature_ID)
mySize = 1_pInt
end select
if (mySize > 0_pInt) then ! any meaningful output found
thermal_conduction_sizePostResult(o,instance) = mySize
thermal_conduction_sizePostResults(instance) = thermal_conduction_sizePostResults(instance) + mySize
endif
enddo outputsLoop
! Determine size of state array
sizeDotState = thermal_conduction_sizeDotState(instance)
sizeState = thermal_conduction_sizeState (instance)
thermalState(phase)%sizeState = sizeState
thermalState(phase)%sizeDotState = sizeDotState
allocate(thermalState(phase)%aTolState (sizeState), source=0.0_pReal)
allocate(thermalState(phase)%state0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%partionedState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%subState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%state (sizeState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%state_backup (sizeState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%deltaState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%dotState_backup (sizeDotState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 1_pInt)) then
allocate(thermalState(phase)%previousDotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%previousDotState2 (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(thermalState(phase)%RK4dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 5_pInt)) &
allocate(thermalState(phase)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
call thermal_conduction_stateInit(phase,instance)
call thermal_conduction_aTolState(phase,instance)
endif
enddo initializeInstances
end subroutine thermal_conduction_init
!--------------------------------------------------------------------------------------------------
!> @brief sets the relevant NEW state values for a given instance of this thermal
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_stateInit(phase,instance)
use material, only: &
thermalState
use lattice, only: &
lattice_referenceTemperature
implicit none
integer(pInt), intent(in) :: instance !< number specifying the instance of the thermal
integer(pInt), intent(in) :: phase !< number specifying the phase of the thermal
real(pReal), dimension(thermalState(phase)%sizeState) :: tempState
tempState(1) = 0.0_pReal
tempState(2) = lattice_referenceTemperature(phase)
thermalState(phase)%state = spread(tempState,2,size(thermalState(phase)%state(1,:)))
thermalState(phase)%state0 = thermalState(phase)%state
thermalState(phase)%partionedState0 = thermalState(phase)%state
end subroutine thermal_conduction_stateInit
!--------------------------------------------------------------------------------------------------
!> @brief sets the relevant state values for a given instance of this thermal
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_aTolState(phase,instance)
use material, only: &
thermalState
implicit none
integer(pInt), intent(in) :: &
phase, &
instance ! number specifying the current instance of the thermal
real(pReal), dimension(thermalState(phase)%sizeState) :: tempTol
tempTol = 0.0_pReal
thermalState(phase)%aTolState = tempTol
end subroutine thermal_conduction_aTolState
!--------------------------------------------------------------------------------------------------
!> @brief calculates derived quantities from state
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_microstructure(Tstar_v, Lp, ipc, ip, el)
use material, only: &
mappingConstitutive, &
phase_thermalInstance, &
thermalState
use math, only: &
math_Mandel6to33
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in), dimension(6) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor (Mandel)
real(pReal), intent(in), dimension(3,3) :: &
Lp
integer(pInt) :: &
instance, phase, constituent
phase = mappingConstitutive(2,ipc,ip,el)
constituent = mappingConstitutive(1,ipc,ip,el)
instance = phase_thermalInstance(phase)
thermalState(phase)%state(1,constituent) = &
sum(abs(math_Mandel6to33(Tstar_v)*Lp))
end subroutine thermal_conduction_microstructure
!--------------------------------------------------------------------------------------------------
!> @brief return array of constitutive results
!--------------------------------------------------------------------------------------------------
function thermal_conduction_postResults(ipc,ip,el)
use material, only: &
mappingConstitutive, &
phase_thermalInstance, &
thermalState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(thermal_conduction_sizePostResults(phase_thermalInstance(mappingConstitutive(2,ipc,ip,el)))) :: &
thermal_conduction_postResults
integer(pInt) :: &
instance, phase, constituent, o, c
phase = mappingConstitutive(2,ipc,ip,el)
constituent = mappingConstitutive(1,ipc,ip,el)
instance = phase_thermalInstance(phase)
c = 0_pInt
thermal_conduction_postResults = 0.0_pReal
do o = 1_pInt,thermal_conduction_Noutput(instance)
select case(thermal_conduction_outputID(o,instance))
case (temperature_ID)
thermal_conduction_postResults(c+1_pInt) = thermalState(phase)%state(2,constituent)
c = c + 1
end select
enddo
end function thermal_conduction_postResults
end module thermal_conduction

106
code/thermal_none.f90 Normal file
View File

@ -0,0 +1,106 @@
!--------------------------------------------------------------------------------------------------
! $Id: thermal_none.f90 3148 2014-05-27 14:46:03Z MPIE\m.diehl $
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for purely elastic material
!--------------------------------------------------------------------------------------------------
module thermal_none
use prec, only: &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
thermal_none_sizeDotState, &
thermal_none_sizeState, &
thermal_none_sizePostResults
integer(pInt), dimension(:,:), allocatable, target, public :: &
thermal_none_sizePostResult !< size of each post result output
public :: &
thermal_none_init
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine thermal_none_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level, &
debug_constitutive, &
debug_levelBasic
use IO, only: &
IO_timeStamp
use numerics, only: &
numerics_integrator
use material, only: &
phase_thermal, &
phase_Noutput, &
THERMAL_NONE_label, &
material_phase, &
thermalState, &
THERMAL_NONE_ID, &
MATERIAL_partPhase
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt) :: &
maxNinstance, &
phase, &
NofMyPhase, &
sizeState, &
sizeDotState
write(6,'(/,a)') ' <<<+- thermal_'//THERMAL_NONE_label//' init -+>>>'
write(6,'(a)') ' $Id: thermal_none.f90 3148 2014-05-27 14:46:03Z MPIE\m.diehl $'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
maxNinstance = int(count(phase_thermal == THERMAL_NONE_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
#ifdef NEWSTATE
initializeInstances: do phase = 1_pInt, size(phase_thermal)
NofMyPhase=count(material_phase==phase)
if (phase_thermal(phase) == THERMAL_none_ID .and. NofMyPhase/=0) then
sizeState = 0_pInt
thermalState(phase)%sizeState = sizeState
sizeDotState = sizeState
thermalState(phase)%sizeDotState = sizeDotState
allocate(thermalState(phase)%state0 (sizeState,NofMyPhase))
allocate(thermalState(phase)%partionedState0(sizeState,NofMyPhase))
allocate(thermalState(phase)%subState0 (sizeState,NofMyPhase))
allocate(thermalState(phase)%state (sizeState,NofMyPhase))
allocate(thermalState(phase)%state_backup (sizeState,NofMyPhase))
allocate(thermalState(phase)%aTolState (NofMyPhase))
allocate(thermalState(phase)%dotState (sizeDotState,NofMyPhase))
allocate(thermalState(phase)%dotState_backup(sizeDotState,NofMyPhase))
if (any(numerics_integrator == 1_pInt)) then
allocate(thermalState(phase)%previousDotState (sizeDotState,NofMyPhase))
allocate(thermalState(phase)%previousDotState2 (sizeDotState,NofMyPhase))
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(thermalState(phase)%RK4dotState (sizeDotState,NofMyPhase))
if (any(numerics_integrator == 5_pInt)) &
allocate(thermalState(phase)%RKCK45dotState (6,sizeDotState,NofMyPhase))
endif
enddo initializeInstances
#else
allocate(thermal_none_sizeDotState(maxNinstance), source=1_pInt)
allocate(thermal_none_sizeState(maxNinstance), source=1_pInt)
#endif
allocate(thermal_none_sizePostResults(maxNinstance), source=0_pInt)
end subroutine thermal_none_init
end module thermal_none