only vectorized version needed
use single point/simple versions only for testing
This commit is contained in:
parent
f9c33d9210
commit
56afc03f3c
|
@ -28,12 +28,12 @@ def deviatoric_part(T):
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
T : numpy.ndarray of shape (:,3,3) or (3,3)
|
T : numpy.ndarray of shape (...,3,3)
|
||||||
Tensor of which the deviatoric part is computed.
|
Tensor of which the deviatoric part is computed.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
return T - _np.eye(3)*spherical_part(T) if _np.shape(T) == (3,3) else \
|
return T - _np.einsum('...ij,...->...ij',_np.eye(3),spherical_part(T))
|
||||||
T - _np.einsum('...ij,...->...ij',_np.eye(3),spherical_part(T))
|
|
||||||
|
|
||||||
def eigenvalues(T_sym):
|
def eigenvalues(T_sym):
|
||||||
"""
|
"""
|
||||||
|
@ -180,22 +180,14 @@ def spherical_part(T,tensor=False):
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
T : numpy.ndarray of shape (:,3,3) or (3,3)
|
T : numpy.ndarray of shape (...,3,3)
|
||||||
Tensor of which the hydrostatic part is computed.
|
Tensor of which the hydrostatic part is computed.
|
||||||
tensor : bool, optional
|
tensor : bool, optional
|
||||||
Map spherical part onto identity tensor. Default is false
|
Map spherical part onto identity tensor. Default is false
|
||||||
|
|
||||||
"""
|
"""
|
||||||
if T.shape == (3,3):
|
|
||||||
sph = _np.trace(T)/3.0
|
|
||||||
return sph if not tensor else _np.eye(3)*sph
|
|
||||||
else:
|
|
||||||
sph = _np.trace(T,axis2=-2,axis1=-1)/3.0
|
sph = _np.trace(T,axis2=-2,axis1=-1)/3.0
|
||||||
if not tensor:
|
return _np.einsum('...jk,...->...jk',_np.eye(3),sph) if tensor else sph
|
||||||
return sph
|
|
||||||
else:
|
|
||||||
#return _np.einsum('ijk,i->ijk',_np.broadcast_to(_np.eye(3),(T.shape[0],3,3)),sph)
|
|
||||||
return _np.einsum('...jk,...->...jk',_np.eye(3),sph)
|
|
||||||
|
|
||||||
|
|
||||||
def strain_tensor(F,t,m):
|
def strain_tensor(F,t,m):
|
||||||
|
|
|
@ -3,12 +3,27 @@ import numpy as np
|
||||||
|
|
||||||
from damask import mechanics
|
from damask import mechanics
|
||||||
|
|
||||||
|
def deviatoric_part(T):
|
||||||
|
return T - np.eye(3)*spherical_part(T)
|
||||||
|
|
||||||
|
def spherical_part(T,tensor=False):
|
||||||
|
sph = np.trace(T)/3.0
|
||||||
|
return sph if not tensor else np.eye(3)*sph
|
||||||
|
|
||||||
class TestMechanics:
|
class TestMechanics:
|
||||||
|
|
||||||
n = 1000
|
n = 1000
|
||||||
c = np.random.randint(n)
|
c = np.random.randint(n)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize('vectorized,single',[(mechanics.deviatoric_part, deviatoric_part),
|
||||||
|
(mechanics.spherical_part, spherical_part)
|
||||||
|
])
|
||||||
|
def test_vectorize_1_arg_(self,vectorized,single):
|
||||||
|
test_data = np.random.rand(self.n,3,3)
|
||||||
|
for i,v in enumerate(vectorized(test_data)):
|
||||||
|
assert np.allclose(single(test_data[i]),v)
|
||||||
|
|
||||||
@pytest.mark.parametrize('function',[mechanics.deviatoric_part,
|
@pytest.mark.parametrize('function',[mechanics.deviatoric_part,
|
||||||
mechanics.eigenvalues,
|
mechanics.eigenvalues,
|
||||||
mechanics.eigenvectors,
|
mechanics.eigenvectors,
|
||||||
|
|
Loading…
Reference in New Issue