mechanics checked for an array with arbitrary dimensions
This commit is contained in:
parent
987c4a9e8d
commit
f9c33d9210
|
@ -18,7 +18,7 @@ def Cauchy(P,F):
|
|||
sigma = 1.0/_np.linalg.det(F) * _np.dot(P,F.T)
|
||||
else:
|
||||
#sigma = _np.einsum('i,ijk,ilk->ijl',1.0/_np.linalg.det(F),P,F)
|
||||
sigma = _np.einsum('...,...ij,...kj->...ij',1.0/_np.linalg.det(F),P,F)
|
||||
sigma = _np.einsum('...,...ij,...kj->...ik',1.0/_np.linalg.det(F),P,F)
|
||||
return symmetric(sigma)
|
||||
|
||||
|
||||
|
@ -33,8 +33,7 @@ def deviatoric_part(T):
|
|||
|
||||
"""
|
||||
return T - _np.eye(3)*spherical_part(T) if _np.shape(T) == (3,3) else \
|
||||
T - _np.einsum('ijk,i->ijk',_np.broadcast_to(_np.eye(3),[T.shape[0],3,3]),spherical_part(T))
|
||||
|
||||
T - _np.einsum('...ij,...->...ij',_np.eye(3),spherical_part(T))
|
||||
|
||||
def eigenvalues(T_sym):
|
||||
"""
|
||||
|
@ -101,7 +100,7 @@ def maximum_shear(T_sym):
|
|||
"""
|
||||
w = eigenvalues(T_sym)
|
||||
return (w[0] - w[2])*0.5 if _np.shape(T_sym) == (3,3) else \
|
||||
(w[:,0] - w[:,2])*0.5
|
||||
(w[...,0] - w[...,2])*0.5
|
||||
|
||||
|
||||
def Mises_strain(epsilon):
|
||||
|
@ -195,7 +194,8 @@ def spherical_part(T,tensor=False):
|
|||
if not tensor:
|
||||
return sph
|
||||
else:
|
||||
return _np.einsum('ijk,i->ijk',_np.broadcast_to(_np.eye(3),(T.shape[0],3,3)),sph)
|
||||
#return _np.einsum('ijk,i->ijk',_np.broadcast_to(_np.eye(3),(T.shape[0],3,3)),sph)
|
||||
return _np.einsum('...jk,...->...jk',_np.eye(3),sph)
|
||||
|
||||
|
||||
def strain_tensor(F,t,m):
|
||||
|
@ -224,13 +224,16 @@ def strain_tensor(F,t,m):
|
|||
w,n = _np.linalg.eigh(C)
|
||||
|
||||
if m > 0.0:
|
||||
eps = 1.0/(2.0*abs(m)) * (+ _np.matmul(n,_np.einsum('ij,ikj->ijk',w**m,n))
|
||||
- _np.broadcast_to(_np.eye(3),[F_.shape[0],3,3]))
|
||||
#eps = 1.0/(2.0*abs(m)) * (+ _np.matmul(n,_np.einsum('ij,ikj->ijk',w**m,n))
|
||||
# - _np.broadcast_to(_np.eye(3),[F_.shape[0],3,3]))
|
||||
eps = 1.0/(2.0*abs(m)) * (+ _np.matmul(n,_np.einsum('...j,...kj->...jk',w**m,n))
|
||||
- _np.einsum('...jk->...jk',_np.eye(3)))
|
||||
|
||||
elif m < 0.0:
|
||||
eps = 1.0/(2.0*abs(m)) * (- _np.matmul(n,_np.einsum('ij,ikj->ijk',w**m,n))
|
||||
+ _np.broadcast_to(_np.eye(3),[F_.shape[0],3,3]))
|
||||
eps = 1.0/(2.0*abs(m)) * (- _np.matmul(n,_np.einsum('...j,...kj->...jk',w**m,n))
|
||||
+ _np.einsum('...jk->...jk',_np.eye(3)))
|
||||
else:
|
||||
eps = _np.matmul(n,_np.einsum('ij,ikj->ijk',0.5*_np.log(w),n))
|
||||
eps = _np.matmul(n,_np.einsum('...j,...kj->....jk',0.5*_np.log(w),n))
|
||||
|
||||
return eps.reshape(3,3) if _np.shape(F) == (3,3) else \
|
||||
eps
|
||||
|
@ -278,15 +281,15 @@ def _polar_decomposition(T,requested):
|
|||
"""
|
||||
u, s, vh = _np.linalg.svd(T)
|
||||
R = _np.dot(u,vh) if _np.shape(T) == (3,3) else \
|
||||
_np.einsum('ijk,ikl->ijl',u,vh)
|
||||
_np.einsum('...ij,...jk->...ik',u,vh)
|
||||
|
||||
output = []
|
||||
if 'R' in requested:
|
||||
output.append(R)
|
||||
if 'V' in requested:
|
||||
output.append(_np.dot(T,R.T) if _np.shape(T) == (3,3) else _np.einsum('ijk,ilk->ijl',T,R))
|
||||
output.append(_np.dot(T,R.T) if _np.shape(T) == (3,3) else _np.einsum('...ij,...kj->...ik',T,R))
|
||||
if 'U' in requested:
|
||||
output.append(_np.dot(R.T,T) if _np.shape(T) == (3,3) else _np.einsum('ikj,ikl->ijl',R,T))
|
||||
output.append(_np.dot(R.T,T) if _np.shape(T) == (3,3) else _np.einsum('...ji,...jk->...ik',R,T))
|
||||
|
||||
return tuple(output)
|
||||
|
||||
|
@ -305,4 +308,4 @@ def _Mises(T_sym,s):
|
|||
"""
|
||||
d = deviatoric_part(T_sym)
|
||||
return _np.sqrt(s*(_np.sum(d**2.0))) if _np.shape(T_sym) == (3,3) else \
|
||||
_np.sqrt(s*_np.einsum('ijk->i',d**2.0))
|
||||
_np.sqrt(s*_np.einsum('...jk->...',d**2.0))
|
||||
|
|
Loading…
Reference in New Issue