not needed as global variable

This commit is contained in:
Martin Diehl 2020-12-24 11:20:34 +01:00
parent 45d318c7b4
commit 3e0361227c
2 changed files with 55 additions and 50 deletions

View File

@ -50,7 +50,6 @@ module constitutive
real(pReal), dimension(:,:,:,:,:), allocatable :: &
crystallite_F0, & !< def grad at start of FE inc
crystallite_subF, & !< def grad to be reached at end of crystallite inc
crystallite_subF0, & !< def grad at start of crystallite inc
crystallite_Fe, & !< current "elastic" def grad (end of converged time step)
crystallite_subFp0,& !< plastic def grad at start of crystallite inc
crystallite_subFi0,& !< intermediate def grad at start of crystallite inc
@ -869,7 +868,7 @@ subroutine crystallite_init
crystallite_partitionedLp0, &
crystallite_S,crystallite_P, &
crystallite_Fe,crystallite_Lp, &
crystallite_subF,crystallite_subF0, &
crystallite_subF, &
crystallite_subFp0,crystallite_subFi0, &
source = crystallite_partitionedF)

View File

@ -951,8 +951,10 @@ end function integrateStress
!> @brief integrate stress, state with adaptive 1st order explicit Euler method
!> using Fixed Point Iteration to adapt the stepsize
!--------------------------------------------------------------------------------------------------
subroutine integrateStateFPI(co,ip,el)
subroutine integrateStateFPI(F_0,F,Delta_t,co,ip,el)
real(pReal), intent(in),dimension(3,3) :: F_0,F
real(pReal), intent(in) :: Delta_t
integer, intent(in) :: &
el, & !< element index in element loop
ip, & !< integration point index in ip loop
@ -974,13 +976,12 @@ subroutine integrateStateFPI(co,ip,el)
ph = material_phaseAt(co,el)
me = material_phaseMemberAt(co,ip,el)
broken = mech_collectDotState(crystallite_subdt(co,ip,el), co,ip,el,ph,me)
broken = mech_collectDotState(Delta_t, co,ip,el,ph,me)
if(broken) return
size_pl = plasticState(ph)%sizeDotState
plasticState(ph)%state(1:size_pl,me) = plasticState(ph)%subState0(1:size_pl,me) &
+ plasticState(ph)%dotState (1:size_pl,me) &
* crystallite_subdt(co,ip,el)
+ plasticState(ph)%dotState (1:size_pl,me) * Delta_t
plastic_dotState(1:size_pl,2) = 0.0_pReal
iteration: do NiterationState = 1, num%nState
@ -988,10 +989,10 @@ subroutine integrateStateFPI(co,ip,el)
if(nIterationState > 1) plastic_dotState(1:size_pl,2) = plastic_dotState(1:size_pl,1)
plastic_dotState(1:size_pl,1) = plasticState(ph)%dotState(:,me)
broken = integrateStress(crystallite_subF(1:3,1:3,co,ip,el),crystallite_subdt(co,ip,el),co,ip,el)
broken = integrateStress(F,Delta_t,co,ip,el)
if(broken) exit iteration
broken = mech_collectDotState(crystallite_subdt(co,ip,el), co,ip,el,ph,me)
broken = mech_collectDotState(Delta_t, co,ip,el,ph,me)
if(broken) exit iteration
zeta = damper(plasticState(ph)%dotState(:,me),plastic_dotState(1:size_pl,1),&
@ -999,10 +1000,10 @@ subroutine integrateStateFPI(co,ip,el)
plasticState(ph)%dotState(:,me) = plasticState(ph)%dotState(:,me) * zeta &
+ plastic_dotState(1:size_pl,1) * (1.0_pReal - zeta)
r(1:size_pl) = plasticState(ph)%state (1:size_pl,me) &
- plasticState(ph)%subState0(1:size_pl,me) &
- plasticState(ph)%dotState (1:size_pl,me) * crystallite_subdt(co,ip,el)
- plasticState(ph)%subState0(1:size_pl,me) &
- plasticState(ph)%dotState (1:size_pl,me) * Delta_t
plasticState(ph)%state(1:size_pl,me) = plasticState(ph)%state(1:size_pl,me) &
- r(1:size_pl)
- r(1:size_pl)
crystallite_converged(co,ip,el) = converged(r(1:size_pl), &
plasticState(ph)%state(1:size_pl,me), &
plasticState(ph)%atol(1:size_pl))
@ -1044,8 +1045,10 @@ end subroutine integrateStateFPI
!--------------------------------------------------------------------------------------------------
!> @brief integrate state with 1st order explicit Euler method
!--------------------------------------------------------------------------------------------------
subroutine integrateStateEuler(co,ip,el)
subroutine integrateStateEuler(F_0,F,Delta_t,co,ip,el)
real(pReal), intent(in),dimension(3,3) :: F_0,F
real(pReal), intent(in) :: Delta_t
integer, intent(in) :: &
el, & !< element index in element loop
ip, & !< integration point index in ip loop
@ -1060,19 +1063,18 @@ subroutine integrateStateEuler(co,ip,el)
ph = material_phaseAt(co,el)
me = material_phaseMemberAt(co,ip,el)
broken = mech_collectDotState(crystallite_subdt(co,ip,el), co,ip,el,ph,me)
broken = mech_collectDotState(Delta_t, co,ip,el,ph,me)
if(broken) return
sizeDotState = plasticState(ph)%sizeDotState
plasticState(ph)%state(1:sizeDotState,me) = plasticState(ph)%subState0(1:sizeDotState,me) &
+ plasticState(ph)%dotState (1:sizeDotState,me) &
* crystallite_subdt(co,ip,el)
+ plasticState(ph)%dotState (1:sizeDotState,me) * Delta_t
broken = constitutive_deltaState(crystallite_S(1:3,1:3,co,ip,el), &
constitutive_mech_Fi(ph)%data(1:3,1:3,me),co,ip,el,ph,me)
if(broken) return
broken = integrateStress(crystallite_subF(1:3,1:3,co,ip,el),crystallite_subdt(co,ip,el),co,ip,el)
broken = integrateStress(F,Delta_t,co,ip,el)
crystallite_converged(co,ip,el) = .not. broken
end subroutine integrateStateEuler
@ -1081,8 +1083,10 @@ end subroutine integrateStateEuler
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state with 1st order Euler method with adaptive step size
!--------------------------------------------------------------------------------------------------
subroutine integrateStateAdaptiveEuler(co,ip,el)
subroutine integrateStateAdaptiveEuler(F_0,F,Delta_t,co,ip,el)
real(pReal), intent(in),dimension(3,3) :: F_0,F
real(pReal), intent(in) :: Delta_t
integer, intent(in) :: &
el, & !< element index in element loop
ip, & !< integration point index in ip loop
@ -1100,29 +1104,29 @@ subroutine integrateStateAdaptiveEuler(co,ip,el)
ph = material_phaseAt(co,el)
me = material_phaseMemberAt(co,ip,el)
broken = mech_collectDotState(crystallite_subdt(co,ip,el), co,ip,el,ph,me)
broken = mech_collectDotState(Delta_t, co,ip,el,ph,me)
if(broken) return
sizeDotState = plasticState(ph)%sizeDotState
residuum_plastic(1:sizeDotState) = - plasticState(ph)%dotstate(1:sizeDotState,me) * 0.5_pReal * crystallite_subdt(co,ip,el)
residuum_plastic(1:sizeDotState) = - plasticState(ph)%dotstate(1:sizeDotState,me) * 0.5_pReal * Delta_t
plasticState(ph)%state(1:sizeDotState,me) = plasticState(ph)%subState0(1:sizeDotState,me) &
+ plasticState(ph)%dotstate(1:sizeDotState,me) * crystallite_subdt(co,ip,el)
+ plasticState(ph)%dotstate(1:sizeDotState,me) * Delta_t
broken = constitutive_deltaState(crystallite_S(1:3,1:3,co,ip,el), &
constitutive_mech_Fi(ph)%data(1:3,1:3,me),co,ip,el,ph,me)
if(broken) return
broken = integrateStress(crystallite_subF(1:3,1:3,co,ip,el),crystallite_subdt(co,ip,el),co,ip,el)
broken = integrateStress(F,Delta_t,co,ip,el)
if(broken) return
broken = mech_collectDotState(crystallite_subdt(co,ip,el), co,ip,el,ph,me)
broken = mech_collectDotState(Delta_t, co,ip,el,ph,me)
if(broken) return
sizeDotState = plasticState(ph)%sizeDotState
crystallite_converged(co,ip,el) = converged(residuum_plastic(1:sizeDotState) &
+ 0.5_pReal * plasticState(ph)%dotState(:,me) * crystallite_subdt(co,ip,el), &
+ 0.5_pReal * plasticState(ph)%dotState(:,me) * Delta_t, &
plasticState(ph)%state(1:sizeDotState,me), &
plasticState(ph)%atol(1:sizeDotState))
@ -1132,8 +1136,10 @@ end subroutine integrateStateAdaptiveEuler
!---------------------------------------------------------------------------------------------------
!> @brief Integrate state (including stress integration) with the classic Runge Kutta method
!---------------------------------------------------------------------------------------------------
subroutine integrateStateRK4(co,ip,el)
subroutine integrateStateRK4(F_0,F,Delta_t,co,ip,el)
real(pReal), intent(in),dimension(3,3) :: F_0,F
real(pReal), intent(in) :: Delta_t
integer, intent(in) :: co,ip,el
real(pReal), dimension(3,3), parameter :: &
@ -1147,7 +1153,7 @@ subroutine integrateStateRK4(co,ip,el)
real(pReal), dimension(4), parameter :: &
B = [1.0_pReal/6.0_pReal, 1.0_pReal/3.0_pReal, 1.0_pReal/3.0_pReal, 1.0_pReal/6.0_pReal]
call integrateStateRK(co,ip,el,A,B,C)
call integrateStateRK(F_0,F,Delta_t,co,ip,el,A,B,C)
end subroutine integrateStateRK4
@ -1155,8 +1161,10 @@ end subroutine integrateStateRK4
!---------------------------------------------------------------------------------------------------
!> @brief Integrate state (including stress integration) with the Cash-Carp method
!---------------------------------------------------------------------------------------------------
subroutine integrateStateRKCK45(co,ip,el)
subroutine integrateStateRKCK45(F_0,F,Delta_t,co,ip,el)
real(pReal), intent(in),dimension(3,3) :: F_0,F
real(pReal), intent(in) :: Delta_t
integer, intent(in) :: co,ip,el
real(pReal), dimension(5,5), parameter :: &
@ -1177,7 +1185,7 @@ subroutine integrateStateRKCK45(co,ip,el)
[2825.0_pReal/27648.0_pReal, .0_pReal, 18575.0_pReal/48384.0_pReal,&
13525.0_pReal/55296.0_pReal, 277.0_pReal/14336.0_pReal, 1._pReal/4._pReal]
call integrateStateRK(co,ip,el,A,B,C,DB)
call integrateStateRK(F_0,F,Delta_t,co,ip,el,A,B,C,DB)
end subroutine integrateStateRKCK45
@ -1186,8 +1194,10 @@ end subroutine integrateStateRKCK45
!> @brief Integrate state (including stress integration) with an explicit Runge-Kutta method or an
!! embedded explicit Runge-Kutta method
!--------------------------------------------------------------------------------------------------
subroutine integrateStateRK(co,ip,el,A,B,C,DB)
subroutine integrateStateRK(F_0,F,Delta_t,co,ip,el,A,B,C,DB)
real(pReal), intent(in),dimension(3,3) :: F_0,F
real(pReal), intent(in) :: Delta_t
real(pReal), dimension(:,:), intent(in) :: A
real(pReal), dimension(:), intent(in) :: B, C
real(pReal), dimension(:), intent(in), optional :: DB
@ -1205,16 +1215,15 @@ subroutine integrateStateRK(co,ip,el,A,B,C,DB)
logical :: &
broken
real(pReal), dimension(constitutive_plasticity_maxSizeDotState,size(B)) :: plastic_RKdotState
real(pReal), dimension(3,3) :: F
ph = material_phaseAt(co,el)
me = material_phaseMemberAt(co,ip,el)
broken = mech_collectDotState(crystallite_subdt(co,ip,el), co,ip,el,ph,me)
broken = mech_collectDotState(Delta_t,co,ip,el,ph,me)
if(broken) return
do stage = 1,size(A,1)
do stage = 1, size(A,1)
sizeDotState = plasticState(ph)%sizeDotState
plastic_RKdotState(1:sizeDotState,stage) = plasticState(ph)%dotState(:,me)
plasticState(ph)%dotState(:,me) = A(1,stage) * plastic_RKdotState(1:sizeDotState,1)
@ -1227,16 +1236,12 @@ subroutine integrateStateRK(co,ip,el,A,B,C,DB)
sizeDotState = plasticState(ph)%sizeDotState
plasticState(ph)%state(1:sizeDotState,me) = plasticState(ph)%subState0(1:sizeDotState,me) &
+ plasticState(ph)%dotState (1:sizeDotState,me) &
* crystallite_subdt(co,ip,el)
+ plasticState(ph)%dotState (1:sizeDotState,me) * Delta_t
F = crystallite_subF0(1:3,1:3,co,ip,el) &
+ (crystallite_subF(1:3,1:3,co,ip,el) - crystallite_subF0(1:3,1:3,co,ip,el)) * C(stage)
broken = integrateStress(F,crystallite_subdt(co,ip,el) * C(stage),co,ip,el)
broken = integrateStress(F_0 + (F - F_0) * Delta_t,Delta_t * C(stage),co,ip,el)
if(broken) exit
broken = mech_collectDotState(crystallite_subdt(co,ip,el)*C(stage), co,ip,el,ph,me)
broken = mech_collectDotState(Delta_t*C(stage),co,ip,el,ph,me)
if(broken) exit
enddo
@ -1247,13 +1252,12 @@ subroutine integrateStateRK(co,ip,el,A,B,C,DB)
plastic_RKdotState(1:sizeDotState,size(B)) = plasticState (ph)%dotState(:,me)
plasticState(ph)%dotState(:,me) = matmul(plastic_RKdotState(1:sizeDotState,1:size(B)),B)
plasticState(ph)%state(1:sizeDotState,me) = plasticState(ph)%subState0(1:sizeDotState,me) &
+ plasticState(ph)%dotState (1:sizeDotState,me) &
* crystallite_subdt(co,ip,el)
+ plasticState(ph)%dotState (1:sizeDotState,me) * Delta_t
if(present(DB)) &
broken = .not. converged( matmul(plastic_RKdotState(1:sizeDotState,1:size(DB)),DB) &
* crystallite_subdt(co,ip,el), &
plasticState(ph)%state(1:sizeDotState,me), &
plasticState(ph)%atol(1:sizeDotState))
broken = .not. converged(matmul(plastic_RKdotState(1:sizeDotState,1:size(DB)),DB) * Delta_t, &
plasticState(ph)%state(1:sizeDotState,me), &
plasticState(ph)%atol(1:sizeDotState))
if(broken) return
@ -1261,7 +1265,7 @@ subroutine integrateStateRK(co,ip,el,A,B,C,DB)
constitutive_mech_Fi(ph)%data(1:3,1:3,me),co,ip,el,ph,me)
if(broken) return
broken = integrateStress(crystallite_subF(1:3,1:3,co,ip,el),crystallite_subdt(co,ip,el),co,ip,el)
broken = integrateStress(F,Delta_t,co,ip,el)
crystallite_converged(co,ip,el) = .not. broken
@ -1494,7 +1498,8 @@ module function crystallite_stress(dt,co,ip,el)
real(pReal) :: subFrac,subStep
real(pReal), dimension(3,3) :: &
subLp0, & !< plastic velocity grad at start of crystallite inc
subLi0 !< intermediate velocity grad at start of crystallite inc
subLi0, & !< intermediate velocity grad at start of crystallite inc
subF0
ph = material_phaseAt(co,el)
@ -1510,7 +1515,7 @@ module function crystallite_stress(dt,co,ip,el)
enddo
crystallite_subFp0(1:3,1:3,co,ip,el) = constitutive_mech_partionedFp0(ph)%data(1:3,1:3,me)
crystallite_subFi0(1:3,1:3,co,ip,el) = constitutive_mech_partionedFi0(ph)%data(1:3,1:3,me)
crystallite_subF0(1:3,1:3,co,ip,el) = crystallite_partitionedF0(1:3,1:3,co,ip,el)
subF0 = crystallite_partitionedF0(1:3,1:3,co,ip,el)
subFrac = 0.0_pReal
subStep = 1.0_pReal/num%subStepSizeCryst
todo = .true.
@ -1531,7 +1536,7 @@ module function crystallite_stress(dt,co,ip,el)
todo = subStep > 0.0_pReal ! still time left to integrate on?
if (todo) then
crystallite_subF0 (1:3,1:3,co,ip,el) = crystallite_subF(1:3,1:3,co,ip,el)
subF0 = crystallite_subF(1:3,1:3,co,ip,el)
subLp0 = crystallite_Lp (1:3,1:3,co,ip,el)
subLi0 = constitutive_mech_Li(ph)%data(1:3,1:3,me)
crystallite_subFp0(1:3,1:3,co,ip,el) = constitutive_mech_Fp(ph)%data(1:3,1:3,me)
@ -1568,7 +1573,7 @@ module function crystallite_stress(dt,co,ip,el)
!--------------------------------------------------------------------------------------------------
! prepare for integration
if (todo) then
crystallite_subF(1:3,1:3,co,ip,el) = crystallite_subF0(1:3,1:3,co,ip,el) &
crystallite_subF(1:3,1:3,co,ip,el) = subF0 &
+ subStep *( crystallite_partitionedF (1:3,1:3,co,ip,el) &
-crystallite_partitionedF0(1:3,1:3,co,ip,el))
crystallite_Fe(1:3,1:3,co,ip,el) = matmul(crystallite_subF(1:3,1:3,co,ip,el), &
@ -1576,7 +1581,8 @@ module function crystallite_stress(dt,co,ip,el)
constitutive_mech_Fp(ph)%data(1:3,1:3,me))))
crystallite_subdt(co,ip,el) = subStep * dt
crystallite_converged(co,ip,el) = .false.
call integrateState(co,ip,el)
call integrateState(subF0,crystallite_subF(1:3,1:3,co,ip,el),&
crystallite_subdt(co,ip,el),co,ip,el)
call integrateSourceState(co,ip,el)
endif