Merge branch 'polish-homogenization' into 'development'

Polish homogenization

See merge request damask/DAMASK!158
This commit is contained in:
Philip Eisenlohr 2020-04-15 16:27:15 +02:00
commit 2a6132b793
1 changed files with 157 additions and 184 deletions

View File

@ -27,33 +27,22 @@ module homogenization
implicit none implicit none
private private
!--------------------------------------------------------------------------------------------------
! General variables for the homogenization at a material point
logical, public :: & logical, public :: &
terminallyIll = .false. !< at least one material point is terminally ill terminallyIll = .false. !< at least one material point is terminally ill
real(pReal), dimension(:,:,:,:), allocatable, public :: &
materialpoint_F0, & !< def grad of IP at start of FE increment
materialpoint_F, & !< def grad of IP to be reached at end of FE increment
materialpoint_P !< first P--K stress of IP
real(pReal), dimension(:,:,:,:,:,:), allocatable, public :: &
materialpoint_dPdF !< tangent of first P--K stress at IP
real(pReal), dimension(:,:,:,:), allocatable :: & !--------------------------------------------------------------------------------------------------
materialpoint_subF0, & !< def grad of IP at beginning of homogenization increment ! General variables for the homogenization at a material point
materialpoint_subF !< def grad of IP to be reached at end of homog inc real(pReal), dimension(:,:,:,:), allocatable, public :: &
real(pReal), dimension(:,:), allocatable :: & materialpoint_F0, & !< def grad of IP at start of FE increment
materialpoint_subFrac, & materialpoint_F !< def grad of IP to be reached at end of FE increment
materialpoint_subStep, & real(pReal), dimension(:,:,:,:), allocatable, public, protected :: &
materialpoint_subdt materialpoint_P !< first P--K stress of IP
logical, dimension(:,:), allocatable :: & real(pReal), dimension(:,:,:,:,:,:), allocatable, public, protected :: &
materialpoint_requested, & materialpoint_dPdF !< tangent of first P--K stress at IP
materialpoint_converged
logical, dimension(:,:,:), allocatable :: &
materialpoint_doneAndHappy
type :: tNumerics type :: tNumerics
integer :: & integer :: &
nMPstate !< materialpoint state loop limit nMPstate !< materialpoint state loop limit
real(pReal) :: & real(pReal) :: &
subStepMinHomog, & !< minimum (relative) size of sub-step allowed during cutback in homogenization subStepMinHomog, & !< minimum (relative) size of sub-step allowed during cutback in homogenization
subStepSizeHomog, & !< size of first substep when cutback in homogenization subStepSizeHomog, & !< size of first substep when cutback in homogenization
@ -161,15 +150,7 @@ subroutine homogenization_init
allocate(materialpoint_dPdF(3,3,3,3,discretization_nIP,discretization_nElem), source=0.0_pReal) allocate(materialpoint_dPdF(3,3,3,3,discretization_nIP,discretization_nElem), source=0.0_pReal)
materialpoint_F0 = spread(spread(math_I3,3,discretization_nIP),4,discretization_nElem) ! initialize to identity materialpoint_F0 = spread(spread(math_I3,3,discretization_nIP),4,discretization_nElem) ! initialize to identity
materialpoint_F = materialpoint_F0 ! initialize to identity materialpoint_F = materialpoint_F0 ! initialize to identity
allocate(materialpoint_subF0(3,3,discretization_nIP,discretization_nElem), source=0.0_pReal)
allocate(materialpoint_subF(3,3,discretization_nIP,discretization_nElem), source=0.0_pReal)
allocate(materialpoint_P(3,3,discretization_nIP,discretization_nElem), source=0.0_pReal) allocate(materialpoint_P(3,3,discretization_nIP,discretization_nElem), source=0.0_pReal)
allocate(materialpoint_subFrac(discretization_nIP,discretization_nElem), source=0.0_pReal)
allocate(materialpoint_subStep(discretization_nIP,discretization_nElem), source=0.0_pReal)
allocate(materialpoint_subdt(discretization_nIP,discretization_nElem), source=0.0_pReal)
allocate(materialpoint_requested(discretization_nIP,discretization_nElem), source=.false.)
allocate(materialpoint_converged(discretization_nIP,discretization_nElem), source=.true.)
allocate(materialpoint_doneAndHappy(2,discretization_nIP,discretization_nElem), source=.true.)
write(6,'(/,a)') ' <<<+- homogenization init -+>>>'; flush(6) write(6,'(/,a)') ' <<<+- homogenization init -+>>>'; flush(6)
@ -203,6 +184,16 @@ subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
e, & !< element number e, & !< element number
mySource, & mySource, &
myNgrains myNgrains
real(pReal), dimension(3,3) :: &
subF
real(pReal), dimension(discretization_nIP,discretization_nElem) :: &
subFrac, &
subStep
logical, dimension(discretization_nIP,discretization_nElem) :: &
requested, &
converged
logical, dimension(2,discretization_nIP,discretization_nElem) :: &
doneAndHappy
#ifdef DEBUG #ifdef DEBUG
if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0) then if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0) then
@ -216,7 +207,7 @@ subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
#endif #endif
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! initialize restoration points of ... ! initialize restoration points
do e = FEsolving_execElem(1),FEsolving_execElem(2) do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(material_homogenizationAt(e)) myNgrains = homogenization_Ngrains(material_homogenizationAt(e))
do i = FEsolving_execIP(1),FEsolving_execIP(2); do i = FEsolving_execIP(1),FEsolving_execIP(2);
@ -238,74 +229,60 @@ subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
enddo enddo
subFrac(i,e) = 0.0_pReal
materialpoint_subF0(1:3,1:3,i,e) = materialpoint_F0(1:3,1:3,i,e) converged(i,e) = .false. ! pretend failed step ...
materialpoint_subFrac(i,e) = 0.0_pReal subStep(i,e) = 1.0_pReal/num%subStepSizeHomog ! ... larger then the requested calculation
materialpoint_subStep(i,e) = 1.0_pReal/num%subStepSizeHomog ! <<added to adopt flexibility in cutback size>> requested(i,e) = .true. ! everybody requires calculation
materialpoint_converged(i,e) = .false. ! pretend failed step of twice the required size
materialpoint_requested(i,e) = .true. ! everybody requires calculation
if (homogState(material_homogenizationAt(e))%sizeState > 0) & if (homogState(material_homogenizationAt(e))%sizeState > 0) &
homogState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = & homogState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = &
homogState(material_homogenizationAt(e))%State0( :,material_homogenizationMemberAt(i,e)) ! ...internal homogenization state homogState(material_homogenizationAt(e))%State0( :,material_homogenizationMemberAt(i,e))
if (thermalState(material_homogenizationAt(e))%sizeState > 0) & if (thermalState(material_homogenizationAt(e))%sizeState > 0) &
thermalState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = & thermalState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = &
thermalState(material_homogenizationAt(e))%State0( :,material_homogenizationMemberAt(i,e)) ! ...internal thermal state thermalState(material_homogenizationAt(e))%State0( :,material_homogenizationMemberAt(i,e))
if (damageState(material_homogenizationAt(e))%sizeState > 0) & if (damageState(material_homogenizationAt(e))%sizeState > 0) &
damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = & damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = &
damageState(material_homogenizationAt(e))%State0( :,material_homogenizationMemberAt(i,e)) ! ...internal damage state damageState(material_homogenizationAt(e))%State0( :,material_homogenizationMemberAt(i,e))
enddo enddo
enddo enddo
NiterationHomog = 0 NiterationHomog = 0
cutBackLooping: do while (.not. terminallyIll .and. & cutBackLooping: do while (.not. terminallyIll .and. &
any(materialpoint_subStep(:,FEsolving_execELem(1):FEsolving_execElem(2)) > num%subStepMinHomog)) any(subStep(:,FEsolving_execELem(1):FEsolving_execElem(2)) > num%subStepMinHomog))
!$OMP PARALLEL DO PRIVATE(myNgrains) !$OMP PARALLEL DO PRIVATE(myNgrains)
elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2) elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(material_homogenizationAt(e)) myNgrains = homogenization_Ngrains(material_homogenizationAt(e))
IpLooping1: do i = FEsolving_execIP(1),FEsolving_execIP(2) IpLooping1: do i = FEsolving_execIP(1),FEsolving_execIP(2)
converged: if (materialpoint_converged(i,e)) then if (converged(i,e)) then
#ifdef DEBUG #ifdef DEBUG
if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0 & if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0 &
.and. ((e == debug_e .and. i == debug_i) & .and. ((e == debug_e .and. i == debug_i) &
.or. .not. iand(debug_level(debug_homogenization),debug_levelSelective) /= 0)) then .or. .not. iand(debug_level(debug_homogenization),debug_levelSelective) /= 0)) then
write(6,'(a,1x,f12.8,1x,a,1x,f12.8,1x,a,i8,1x,i2/)') '<< HOMOG >> winding forward from', & write(6,'(a,1x,f12.8,1x,a,1x,f12.8,1x,a,i8,1x,i2/)') '<< HOMOG >> winding forward from', &
materialpoint_subFrac(i,e), 'to current materialpoint_subFrac', & subFrac(i,e), 'to current subFrac', &
materialpoint_subFrac(i,e)+materialpoint_subStep(i,e),'in materialpoint_stressAndItsTangent at el ip',e,i subFrac(i,e)+subStep(i,e),'in materialpoint_stressAndItsTangent at el ip',e,i
endif endif
#endif #endif
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
! calculate new subStep and new subFrac ! calculate new subStep and new subFrac
materialpoint_subFrac(i,e) = materialpoint_subFrac(i,e) + materialpoint_subStep(i,e) subFrac(i,e) = subFrac(i,e) + subStep(i,e)
materialpoint_subStep(i,e) = min(1.0_pReal-materialpoint_subFrac(i,e), & subStep(i,e) = min(1.0_pReal-subFrac(i,e),num%stepIncreaseHomog*subStep(i,e)) ! introduce flexibility for step increase/acceleration
num%stepIncreaseHomog*materialpoint_subStep(i,e)) ! introduce flexibility for step increase/acceleration
steppingNeeded: if (materialpoint_subStep(i,e) > num%subStepMinHomog) then steppingNeeded: if (subStep(i,e) > num%subStepMinHomog) then
! wind forward grain starting point of... ! wind forward grain starting point
crystallite_partionedF0 (1:3,1:3,1:myNgrains,i,e) = & crystallite_partionedF0 (1:3,1:3,1:myNgrains,i,e) = crystallite_partionedF(1:3,1:3,1:myNgrains,i,e)
crystallite_partionedF(1:3,1:3,1:myNgrains,i,e) crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Fp (1:3,1:3,1:myNgrains,i,e)
crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Lp (1:3,1:3,1:myNgrains,i,e)
crystallite_partionedFp0 (1:3,1:3,1:myNgrains,i,e) = & crystallite_partionedFi0(1:3,1:3,1:myNgrains,i,e) = crystallite_Fi (1:3,1:3,1:myNgrains,i,e)
crystallite_Fp (1:3,1:3,1:myNgrains,i,e) crystallite_partionedLi0(1:3,1:3,1:myNgrains,i,e) = crystallite_Li (1:3,1:3,1:myNgrains,i,e)
crystallite_partionedS0 (1:3,1:3,1:myNgrains,i,e) = crystallite_S (1:3,1:3,1:myNgrains,i,e)
crystallite_partionedLp0 (1:3,1:3,1:myNgrains,i,e) = &
crystallite_Lp (1:3,1:3,1:myNgrains,i,e)
crystallite_partionedFi0 (1:3,1:3,1:myNgrains,i,e) = &
crystallite_Fi (1:3,1:3,1:myNgrains,i,e)
crystallite_partionedLi0 (1:3,1:3,1:myNgrains,i,e) = &
crystallite_Li (1:3,1:3,1:myNgrains,i,e)
crystallite_partionedS0 (1:3,1:3,1:myNgrains,i,e) = &
crystallite_S (1:3,1:3,1:myNgrains,i,e)
do g = 1,myNgrains do g = 1,myNgrains
plasticState (material_phaseAt(g,e))%partionedState0(:,material_phasememberAt(g,i,e)) = & plasticState (material_phaseAt(g,e))%partionedState0(:,material_phasememberAt(g,i,e)) = &
@ -326,15 +303,12 @@ subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = & damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = &
damageState(material_homogenizationAt(e))%State (:,material_homogenizationMemberAt(i,e)) damageState(material_homogenizationAt(e))%State (:,material_homogenizationMemberAt(i,e))
materialpoint_subF0(1:3,1:3,i,e) = materialpoint_subF(1:3,1:3,i,e)
endif steppingNeeded endif steppingNeeded
else converged else
if ( (myNgrains == 1 .and. materialpoint_subStep(i,e) <= 1.0 ) .or. & ! single grain already tried internal subStepping in crystallite if ( (myNgrains == 1 .and. subStep(i,e) <= 1.0 ) .or. & ! single grain already tried internal subStepping in crystallite
num%subStepSizeHomog * materialpoint_subStep(i,e) <= num%subStepMinHomog ) then ! would require too small subStep num%subStepSizeHomog * subStep(i,e) <= num%subStepMinHomog ) then ! would require too small subStep
! cutback makes no sense ! cutback makes no sense
!$OMP FLUSH(terminallyIll)
if (.not. terminallyIll) then ! so first signals terminally ill... if (.not. terminallyIll) then ! so first signals terminally ill...
!$OMP CRITICAL (write2out) !$OMP CRITICAL (write2out)
write(6,*) 'Integration point ', i,' at element ', e, ' terminally ill' write(6,*) 'Integration point ', i,' at element ', e, ' terminally ill'
@ -342,32 +316,27 @@ subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
endif endif
terminallyIll = .true. ! ...and kills all others terminallyIll = .true. ! ...and kills all others
else ! cutback makes sense else ! cutback makes sense
materialpoint_subStep(i,e) = num%subStepSizeHomog * materialpoint_subStep(i,e) ! crystallite had severe trouble, so do a significant cutback subStep(i,e) = num%subStepSizeHomog * subStep(i,e) ! crystallite had severe trouble, so do a significant cutback
#ifdef DEBUG #ifdef DEBUG
if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0 & if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0 &
.and. ((e == debug_e .and. i == debug_i) & .and. ((e == debug_e .and. i == debug_i) &
.or. .not. iand(debug_level(debug_homogenization), debug_levelSelective) /= 0)) then .or. .not. iand(debug_level(debug_homogenization), debug_levelSelective) /= 0)) then
write(6,'(a,1x,f12.8,a,i8,1x,i2/)') & write(6,'(a,1x,f12.8,a,i8,1x,i2/)') &
'<< HOMOG >> cutback step in materialpoint_stressAndItsTangent with new materialpoint_subStep:',& '<< HOMOG >> cutback step in materialpoint_stressAndItsTangent with new subStep:',&
materialpoint_subStep(i,e),' at el ip',e,i subStep(i,e),' at el ip',e,i
endif endif
#endif #endif
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! restore... ! restore
if (materialpoint_subStep(i,e) < 1.0_pReal) then ! protect against fake cutback from \Delta t = 2 to 1. Maybe that "trick" is not necessary anymore at all? I.e. start with \Delta t = 1 if (subStep(i,e) < 1.0_pReal) then ! protect against fake cutback from \Delta t = 2 to 1. Maybe that "trick" is not necessary anymore at all? I.e. start with \Delta t = 1
crystallite_Lp(1:3,1:3,1:myNgrains,i,e) = & crystallite_Lp(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e)
crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) crystallite_Li(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedLi0(1:3,1:3,1:myNgrains,i,e)
crystallite_Li(1:3,1:3,1:myNgrains,i,e) = &
crystallite_partionedLi0(1:3,1:3,1:myNgrains,i,e)
endif ! maybe protecting everything from overwriting (not only L) makes even more sense endif ! maybe protecting everything from overwriting (not only L) makes even more sense
crystallite_Fp(1:3,1:3,1:myNgrains,i,e) = & crystallite_Fp(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e)
crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) crystallite_Fi(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedFi0(1:3,1:3,1:myNgrains,i,e)
crystallite_Fi(1:3,1:3,1:myNgrains,i,e) = & crystallite_S (1:3,1:3,1:myNgrains,i,e) = crystallite_partionedS0 (1:3,1:3,1:myNgrains,i,e)
crystallite_partionedFi0(1:3,1:3,1:myNgrains,i,e)
crystallite_S(1:3,1:3,1:myNgrains,i,e) = &
crystallite_partionedS0(1:3,1:3,1:myNgrains,i,e)
do g = 1, myNgrains do g = 1, myNgrains
plasticState (material_phaseAt(g,e))%state( :,material_phasememberAt(g,i,e)) = & plasticState (material_phaseAt(g,e))%state( :,material_phasememberAt(g,i,e)) = &
plasticState (material_phaseAt(g,e))%partionedState0(:,material_phasememberAt(g,i,e)) plasticState (material_phaseAt(g,e))%partionedState0(:,material_phasememberAt(g,i,e))
@ -386,15 +355,11 @@ subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
damageState(material_homogenizationAt(e))%State( :,material_homogenizationMemberAt(i,e)) = & damageState(material_homogenizationAt(e))%State( :,material_homogenizationMemberAt(i,e)) = &
damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e))
endif endif
endif converged endif
if (materialpoint_subStep(i,e) > num%subStepMinHomog) then if (subStep(i,e) > num%subStepMinHomog) then
materialpoint_requested(i,e) = .true. requested(i,e) = .true.
materialpoint_subF(1:3,1:3,i,e) = materialpoint_subF0(1:3,1:3,i,e) & doneAndHappy(1:2,i,e) = [.false.,.true.]
+ materialpoint_subStep(i,e) * (materialpoint_F(1:3,1:3,i,e) &
- materialpoint_F0(1:3,1:3,i,e))
materialpoint_subdt(i,e) = materialpoint_subStep(i,e) * dt
materialpoint_doneAndHappy(1:2,i,e) = [.false.,.true.]
endif endif
enddo IpLooping1 enddo IpLooping1
enddo elementLooping1 enddo elementLooping1
@ -403,8 +368,8 @@ subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
NiterationMPstate = 0 NiterationMPstate = 0
convergenceLooping: do while (.not. terminallyIll .and. & convergenceLooping: do while (.not. terminallyIll .and. &
any( materialpoint_requested(:,FEsolving_execELem(1):FEsolving_execElem(2)) & any( requested(:,FEsolving_execELem(1):FEsolving_execElem(2)) &
.and. .not. materialpoint_doneAndHappy(1,:,FEsolving_execELem(1):FEsolving_execElem(2)) & .and. .not. doneAndHappy(1,:,FEsolving_execELem(1):FEsolving_execElem(2)) &
) .and. & ) .and. &
NiterationMPstate < num%nMPstate) NiterationMPstate < num%nMPstate)
NiterationMPstate = NiterationMPstate + 1 NiterationMPstate = NiterationMPstate + 1
@ -413,14 +378,15 @@ subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
! deformation partitioning ! deformation partitioning
! based on materialpoint_subF0,.._subF,crystallite_partionedF0, and homogenization_state, ! based on materialpoint_subF0,.._subF,crystallite_partionedF0, and homogenization_state,
! results in crystallite_partionedF ! results in crystallite_partionedF
!$OMP PARALLEL DO PRIVATE(myNgrains) !$OMP PARALLEL DO PRIVATE(myNgrains,subF)
elementLooping2: do e = FEsolving_execElem(1),FEsolving_execElem(2) elementLooping2: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(material_homogenizationAt(e)) myNgrains = homogenization_Ngrains(material_homogenizationAt(e))
IpLooping2: do i = FEsolving_execIP(1),FEsolving_execIP(2) IpLooping2: do i = FEsolving_execIP(1),FEsolving_execIP(2)
if ( materialpoint_requested(i,e) .and. & ! process requested but... if(requested(i,e) .and. .not. doneAndHappy(1,i,e)) then ! requested but not yet done
.not. materialpoint_doneAndHappy(1,i,e)) then ! ...not yet done material points subF = materialpoint_F0(1:3,1:3,i,e) &
call partitionDeformation(i,e) ! partition deformation onto constituents + (materialpoint_F(1:3,1:3,i,e)-materialpoint_F0(1:3,1:3,i,e))*(subStep(i,e)+subFrac(i,e))
crystallite_dt(1:myNgrains,i,e) = materialpoint_subdt(i,e) ! propagate materialpoint dt to grains call partitionDeformation(subF,i,e) ! partition deformation onto constituents
crystallite_dt(1:myNgrains,i,e) = dt*subStep(i,e) ! propagate materialpoint dt to grains
crystallite_requested(1:myNgrains,i,e) = .true. ! request calculation for constituents crystallite_requested(1:myNgrains,i,e) = .true. ! request calculation for constituents
else else
crystallite_requested(1:myNgrains,i,e) = .false. ! calculation for constituents not required anymore crystallite_requested(1:myNgrains,i,e) = .false. ! calculation for constituents not required anymore
@ -434,20 +400,21 @@ subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
! based on crystallite_partionedF0,.._partionedF ! based on crystallite_partionedF0,.._partionedF
! incrementing by crystallite_dt ! incrementing by crystallite_dt
materialpoint_converged = crystallite_stress() !ToDo: MD not sure if that is the best logic converged = crystallite_stress() !ToDo: MD not sure if that is the best logic
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! state update ! state update
!$OMP PARALLEL DO !$OMP PARALLEL DO PRIVATE(subF)
elementLooping3: do e = FEsolving_execElem(1),FEsolving_execElem(2) elementLooping3: do e = FEsolving_execElem(1),FEsolving_execElem(2)
IpLooping3: do i = FEsolving_execIP(1),FEsolving_execIP(2) IpLooping3: do i = FEsolving_execIP(1),FEsolving_execIP(2)
if ( materialpoint_requested(i,e) .and. & if (requested(i,e) .and. .not. doneAndHappy(1,i,e)) then
.not. materialpoint_doneAndHappy(1,i,e)) then if (.not. converged(i,e)) then
if (.not. materialpoint_converged(i,e)) then doneAndHappy(1:2,i,e) = [.true.,.false.]
materialpoint_doneAndHappy(1:2,i,e) = [.true.,.false.]
else else
materialpoint_doneAndHappy(1:2,i,e) = updateState(i,e) subF = materialpoint_F0(1:3,1:3,i,e) &
materialpoint_converged(i,e) = all(materialpoint_doneAndHappy(1:2,i,e)) ! converged if done and happy + (materialpoint_F(1:3,1:3,i,e)-materialpoint_F0(1:3,1:3,i,e))*(subStep(i,e)+subFrac(i,e))
doneAndHappy(1:2,i,e) = updateState(dt*subStep(i,e),subF,i,e)
converged(i,e) = all(doneAndHappy(1:2,i,e)) ! converged if done and happy
endif endif
endif endif
enddo IpLooping3 enddo IpLooping3
@ -481,29 +448,31 @@ end subroutine materialpoint_stressAndItsTangent
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief partition material point def grad onto constituents !> @brief partition material point def grad onto constituents
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine partitionDeformation(ip,el) subroutine partitionDeformation(subF,ip,el)
integer, intent(in) :: & real(pReal), intent(in), dimension(3,3) :: &
ip, & !< integration point subF
el !< element number integer, intent(in) :: &
ip, & !< integration point
el !< element number
chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el))) chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el)))
case (HOMOGENIZATION_NONE_ID) chosenHomogenization case (HOMOGENIZATION_NONE_ID) chosenHomogenization
crystallite_partionedF(1:3,1:3,1,ip,el) = materialpoint_subF(1:3,1:3,ip,el) crystallite_partionedF(1:3,1:3,1,ip,el) = subF
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
call mech_isostrain_partitionDeformation(& call mech_isostrain_partitionDeformation(&
crystallite_partionedF(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
subF)
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
call mech_RGC_partitionDeformation(&
crystallite_partionedF(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & crystallite_partionedF(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
materialpoint_subF(1:3,1:3,ip,el)) subF,&
ip, &
case (HOMOGENIZATION_RGC_ID) chosenHomogenization el)
call mech_RGC_partitionDeformation(& end select chosenHomogenization
crystallite_partionedF(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
materialpoint_subF(1:3,1:3,ip,el),&
ip, &
el)
end select chosenHomogenization
end subroutine partitionDeformation end subroutine partitionDeformation
@ -512,45 +481,49 @@ end subroutine partitionDeformation
!> @brief update the internal state of the homogenization scheme and tell whether "done" and !> @brief update the internal state of the homogenization scheme and tell whether "done" and
!> "happy" with result !> "happy" with result
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function updateState(ip,el) function updateState(subdt,subF,ip,el)
integer, intent(in) :: & real(pReal), intent(in) :: &
ip, & !< integration point subdt !< current time step
el !< element number real(pReal), intent(in), dimension(3,3) :: &
logical, dimension(2) :: updateState subF
integer, intent(in) :: &
ip, & !< integration point
el !< element number
logical, dimension(2) :: updateState
updateState = .true. updateState = .true.
chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el))) chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el)))
case (HOMOGENIZATION_RGC_ID) chosenHomogenization case (HOMOGENIZATION_RGC_ID) chosenHomogenization
updateState = & updateState = &
updateState .and. & updateState .and. &
mech_RGC_updateState(crystallite_P(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & mech_RGC_updateState(crystallite_P(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
crystallite_partionedF(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & crystallite_partionedF(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
crystallite_partionedF0(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el),& crystallite_partionedF0(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el),&
materialpoint_subF(1:3,1:3,ip,el),& subF,&
materialpoint_subdt(ip,el), & subdt, &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
ip, & ip, &
el) el)
end select chosenHomogenization end select chosenHomogenization
chosenThermal: select case (thermal_type(material_homogenizationAt(el))) chosenThermal: select case (thermal_type(material_homogenizationAt(el)))
case (THERMAL_adiabatic_ID) chosenThermal case (THERMAL_adiabatic_ID) chosenThermal
updateState = & updateState = &
updateState .and. & updateState .and. &
thermal_adiabatic_updateState(materialpoint_subdt(ip,el), & thermal_adiabatic_updateState(subdt, &
ip, & ip, &
el) el)
end select chosenThermal end select chosenThermal
chosenDamage: select case (damage_type(material_homogenizationAt(el))) chosenDamage: select case (damage_type(material_homogenizationAt(el)))
case (DAMAGE_local_ID) chosenDamage case (DAMAGE_local_ID) chosenDamage
updateState = & updateState = &
updateState .and. & updateState .and. &
damage_local_updateState(materialpoint_subdt(ip,el), & damage_local_updateState(subdt, &
ip, & ip, &
el) el)
end select chosenDamage end select chosenDamage
end function updateState end function updateState
@ -560,31 +533,31 @@ end function updateState
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine averageStressAndItsTangent(ip,el) subroutine averageStressAndItsTangent(ip,el)
integer, intent(in) :: & integer, intent(in) :: &
ip, & !< integration point ip, & !< integration point
el !< element number el !< element number
chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el))) chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el)))
case (HOMOGENIZATION_NONE_ID) chosenHomogenization case (HOMOGENIZATION_NONE_ID) chosenHomogenization
materialpoint_P(1:3,1:3,ip,el) = crystallite_P(1:3,1:3,1,ip,el) materialpoint_P(1:3,1:3,ip,el) = crystallite_P(1:3,1:3,1,ip,el)
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el) = crystallite_dPdF(1:3,1:3,1:3,1:3,1,ip,el) materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el) = crystallite_dPdF(1:3,1:3,1:3,1:3,1,ip,el)
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
call mech_isostrain_averageStressAndItsTangent(& call mech_isostrain_averageStressAndItsTangent(&
materialpoint_P(1:3,1:3,ip,el), & materialpoint_P(1:3,1:3,ip,el), &
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),& materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
crystallite_P(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & crystallite_P(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
homogenization_typeInstance(material_homogenizationAt(el))) homogenization_typeInstance(material_homogenizationAt(el)))
case (HOMOGENIZATION_RGC_ID) chosenHomogenization case (HOMOGENIZATION_RGC_ID) chosenHomogenization
call mech_RGC_averageStressAndItsTangent(& call mech_RGC_averageStressAndItsTangent(&
materialpoint_P(1:3,1:3,ip,el), & materialpoint_P(1:3,1:3,ip,el), &
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),& materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
crystallite_P(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & crystallite_P(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
homogenization_typeInstance(material_homogenizationAt(el))) homogenization_typeInstance(material_homogenizationAt(el)))
end select chosenHomogenization end select chosenHomogenization
end subroutine averageStressAndItsTangent end subroutine averageStressAndItsTangent