started to add curl calculation to postprocessingMath.f90
restructured colormap calculation. Algorithm is working now, but input/output still has to be done
This commit is contained in:
parent
81e9607316
commit
267b8ac30c
|
@ -0,0 +1,36 @@
|
|||
#!/usr/bin/python
|
||||
# -*- coding: iso-8859-1 -*-
|
||||
|
||||
def write_gsmh(RGB_vector,name):
|
||||
colormap = open(str(name) + '.map',"w")
|
||||
colormap.write('View.ColorTable = {\n')
|
||||
for i in range(len(RGB_vector)-1):
|
||||
colormap.write('{'+str((RGB_vector[0][i])*255.0)+','+str((RGB_vector[0][i])*255.0)+','+str((RGB_vector[0][i])*255.0)+'},\n')
|
||||
colormap.write('{'+str((RGB_vector[0][-1])*255.0)+','+str((RGB_vector[0][-1])*255.0)+','+str((RGB_vector[0][-1])*255.0)+'}}')
|
||||
file.close(colormap)
|
||||
|
||||
def write_paraview(RGB_vector,name):
|
||||
colormap = open(str(name) + '.xml',"w")
|
||||
colormap.write('<ColorMap name = "'+ str(name)+ '" space = "RGB">\n')
|
||||
for i in range(len(RGB_vector)):
|
||||
colormap.write('<Point x="'+str(i)+'" o="1" r="'+str(RGB_vector[0][i])+'" g="'+str(RGB_vector[1][i])+'" b="'+str(RGB_vector[2][i])+'"/>\n')
|
||||
colormap.write('</ColorMap>')
|
||||
file.close(colormap)
|
||||
|
||||
def write_paraview2(RGB_vector,name):
|
||||
colormap = open(str(name) + '.xml',"w")
|
||||
colormap.write('<ColorMap name = "'+ str(name)+ '" space = "RGB">\n')
|
||||
for i in range(len(RGB_vector)/3):
|
||||
colormap.write('<Point x="'+str(i)+'" o="1" r="'+str(RGB_vector[i*3])+'" g="'+str(RGB_vector[i*3+1])+'" b="'+str(RGB_vector[i*3+2])+'"/>\n')
|
||||
colormap.write('</ColorMap>')
|
||||
file.close(colormap)
|
||||
|
||||
def write_raw(RGB_vector,name):
|
||||
colormap = open(str(name) + '.colormap',"w")
|
||||
colormap.write('ColorMap name = ' + str(name)+'\n')
|
||||
for i in range(len(RGB_vector)):
|
||||
colormap.write(str(RGB_vector[0][i])+'\t'+str(RGB_vector[1][i])+'\t'+str(RGB_vector[2][i])+'\n')
|
||||
file.close(colormap)
|
||||
|
||||
def read_raw(filename):
|
||||
print 'void'
|
|
@ -0,0 +1,173 @@
|
|||
#!/usr/bin/python
|
||||
# -*- coding: iso-8859-1 -*-
|
||||
|
||||
import math
|
||||
|
||||
# from http://code.activestate.com/recipes/121574-matrix-vector-multiplication/
|
||||
def matmult(m, v):
|
||||
nrows = len(m)
|
||||
w = [None] * nrows
|
||||
for row in range(nrows):
|
||||
w[row] = reduce(lambda x,y: x+y, map(lambda x,y: x*y, m[row], v))
|
||||
return w
|
||||
|
||||
# convert H(ue) S(aturation) L(uminance) to R(ot) G(elb) B(lau)
|
||||
# with S,L,R,G,B running from 0 to 1, H running from 0 to 360
|
||||
# from http://en.wikipedia.org/wiki/HSL_and_HSV
|
||||
def HSL2RGB(HSL):
|
||||
RGB = [0.0,0.0,0.0]
|
||||
H_strich = HSL[0]/60.0
|
||||
c = (1.0- abs(2.0 * HSL[2] - 1.0))*HSL[1]
|
||||
x = c*(1.0- abs(H_strich%2-1.0))
|
||||
m = HSL[2] -.5*c
|
||||
if (0.0 <= H_strich)and(H_strich<1.0):
|
||||
RGB[0] = c + m
|
||||
RGB[1] = x + m
|
||||
RGB[2] = 0.0 + m
|
||||
elif (1.0 <= H_strich)and(H_strich<2.0):
|
||||
RGB[0] = x + m
|
||||
RGB[1] = c + m
|
||||
RGB[2] = 0.0 + m
|
||||
elif (2.0 <= H_strich)and(H_strich<3.0):
|
||||
RGB[0] = 0.0 + m
|
||||
RGB[1] = c + m
|
||||
RGB[2] = x + m
|
||||
elif (3.0 <= H_strich)and(H_strich<4.0):
|
||||
RGB[0] = 0.0 + m
|
||||
RGB[1] = x + m
|
||||
RGB[2] = c + m
|
||||
elif (4.0 <= H_strich)and(H_strich<5.0):
|
||||
RGB[0] = x + m
|
||||
RGB[1] = 0.0 + m
|
||||
RGB[2] = c + m
|
||||
elif (5.0 <= H_strich)and(H_strich<=6.0):
|
||||
RGB[0] = c + m
|
||||
RGB[1] = 0.0 + m
|
||||
RGB[2] = x + m
|
||||
for i in range(3):
|
||||
RGB[i] = min(RGB[i],1.0)
|
||||
RGB[i] = max(RGB[i],0.0)
|
||||
return RGB
|
||||
|
||||
# convert R(ot) G(elb) B(lau) to H(ue) S(aturation) L(uminance)
|
||||
# with S,L,R,G,B running from 0 to 1, H running from 0 to 360
|
||||
# from http://130.113.54.154/~monger/hsl-rgb.html
|
||||
def RGB2HSL(RGB):
|
||||
HSL = [0.0,0.0,0.0]
|
||||
maxcolor = max(RGB)
|
||||
mincolor = min(RGB)
|
||||
HSL[2] = (maxcolor + mincolor)/2.0
|
||||
if(mincolor == maxcolor):
|
||||
HSL[0] = 0.0
|
||||
HSL[1] = 0.0
|
||||
else:
|
||||
if (HSL[2]<0.5):
|
||||
HSL[1] = (maxcolor - mincolor)/(maxcolor + mincolor)
|
||||
else:
|
||||
HSL[1] = (maxcolor - mincolor)/(2.0 -maxcolor -mincolor)
|
||||
if (maxcolor == RGB[0]):
|
||||
HSL[0] = 0.0 + (RGB[1] - RGB[2])/(maxcolor - mincolor)
|
||||
elif (maxcolor == RGB[1]):
|
||||
HSL[0] = 2.0 + (RGB[2] - RGB[0])/(maxcolor - mincolor)
|
||||
elif (maxcolor == RGB[2]):
|
||||
HSL[0] = 4.0 + (RGB[0] - RGB[1])/(maxcolor - mincolor)
|
||||
HSL[0] = HSL[0]*60.0
|
||||
if (HSL[0] < 0.0):
|
||||
HSL[0] = HSL[0] + 360.0
|
||||
for i in range(2):
|
||||
HSL[i+1] = min(HSL[i+1],1.0)
|
||||
HSL[i+1] = max(HSL[i+1],0.0)
|
||||
return HSL
|
||||
|
||||
# convert R(ot) G(elb) B(lau) to CIE XYZ
|
||||
# with all values in the range of 0 to 1
|
||||
# from http://www.cs.rit.edu/~ncs/color/t_convert.html
|
||||
def RGB2XYZ(RGB):
|
||||
XYZ = [0.0,0.0,0.0]
|
||||
RGB_lin = [0.0,0.0,0.0]
|
||||
for i in range(3):
|
||||
if (RGB[i] > 0.04045):
|
||||
RGB_lin[i] = ((RGB[i]+0.0555)/1.0555)**2.4
|
||||
else:
|
||||
RGB_lin[i] = RGB[i]/12.92
|
||||
convert =[[0.412453,0.357580,0.180423],[0.212671,0.715160,0.072169],[0.019334,0.119193,0.950227]]
|
||||
XYZ = matmult(convert,RGB_lin)
|
||||
for i in range(3):
|
||||
XYZ[i] = min(XYZ[i],1.0)
|
||||
XYZ[i] = max(XYZ[i],0.0)
|
||||
return XYZ
|
||||
|
||||
# convert CIE XYZ R(ot) G(elb) B(lau)
|
||||
# with all values in the range of 0 to 1
|
||||
# from http://www.cs.rit.edu/~ncs/color/t_convert.html
|
||||
def XYZ2RGB(XYZ):
|
||||
RGB_lin = [0.0,0.0,0.0]
|
||||
RGB = [0.0,0.0,0.0]
|
||||
convert =[[3.240479,-1.537150,-0.498535],[-0.969256,1.875992,0.041556],[0.055648,-0.204043,1.057311]]
|
||||
RGB_lin = matmult(convert,XYZ)
|
||||
for i in range(3):
|
||||
if (RGB_lin[i] > 0.0031308):
|
||||
RGB[i] = ((RGB_lin[i])**(1.0/2.4))*1.0555-0.0555
|
||||
else:
|
||||
RGB[i] = RGB_lin[i]*12.92
|
||||
for i in range(3):
|
||||
RGB[i] = min(RGB[i],1.0)
|
||||
RGB[i] = max(RGB[i],0.0)
|
||||
return RGB
|
||||
|
||||
# convert CIE Lab to CIE XYZ
|
||||
# with XYZ in the range of 0 to 1
|
||||
# from http://en.wikipedia.org/wiki/Lab_color_space, http://www.cs.rit.edu/~ncs/color/t_convert.html
|
||||
def CIELab2XYZ(Lab,white):
|
||||
XYZ = [0.0,0.0,0.0]
|
||||
temp = [0.0,0.0,0.0]
|
||||
temp[0] = 1.0/116.0 *(Lab[0] + 16.0) + 1/500.0 * Lab[1]
|
||||
temp[1] = 1.0/116.0 *(Lab[0] + 16.0)
|
||||
temp[2] = 1.0/116.0 *(Lab[0] + 16.0) - 1/200.0 * Lab[2]
|
||||
for i in range(3):
|
||||
if (temp[i] > 6.0/29.0):
|
||||
temp[i] = temp[i]**(3.0)
|
||||
else:
|
||||
temp[i] =3 * (6.0/29.0)**2 * (temp[i]- 4.0/29.0)
|
||||
XYZ[i] = white[i] * temp[i]
|
||||
for i in range(3):
|
||||
XYZ[i] = min(XYZ[i],1.0)
|
||||
XYZ[i] = max(XYZ[i],0.0)
|
||||
return XYZ
|
||||
|
||||
# convert CIE XYZ to CIE Lab
|
||||
# with XYZ in the range of 0 to 1
|
||||
# from http://en.wikipedia.org/wiki/Lab_color_space, http://www.cs.rit.edu/~ncs/color/t_convert.html
|
||||
def XYZ2CIELab(XYZ,white):
|
||||
temp = [0.0,0.0,0.0]
|
||||
Lab = [0.0,0.0,0.0]
|
||||
for i in range(3):
|
||||
temp[i] = XYZ[i]/white[i]
|
||||
if (temp[i] > (6.0/29.0)**3.0):
|
||||
temp[i] = temp[i]**(1.0/3.0)
|
||||
else:
|
||||
temp[i] = 1.0/3.0 * (29.0/6.0)**2.0 * temp[i] + 4.0/29.0
|
||||
Lab[0] = 116.0 * temp[1] - 16.0
|
||||
Lab[1] = 500.0 *(temp[0] - temp[1])
|
||||
Lab[2] = 200.0 *(temp[1] - temp[2])
|
||||
return Lab
|
||||
|
||||
# convert Cie Lab to msh colorspace
|
||||
# from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls
|
||||
def CIELab2Msh(Lab):
|
||||
Msh = [0.0,0.0,0.0]
|
||||
Msh[0] = math.sqrt(Lab[0]**2.0 + Lab[1]**2.0 + Lab[2]**2.0)
|
||||
if (Msh[0] != 0.0):
|
||||
Msh[1] = math.acos(Lab[0]/Msh[0])
|
||||
if (Lab[1] != 0.0):
|
||||
Msh[2] = math.atan2(Lab[2],Lab[1])
|
||||
return Msh
|
||||
|
||||
# convert msh colorspace to Cie Lab
|
||||
# from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls
|
||||
def Msh2CIELab(Msh):
|
||||
Lab = [0.0,0.0,0.0]
|
||||
Lab[0] = Msh[0] * math.cos(Msh[1])
|
||||
Lab[1] = Msh[0] * math.sin(Msh[1]) * math.cos(Msh[2])
|
||||
Lab[2] = Msh[0] * math.sin(Msh[1]) * math.sin(Msh[2])
|
||||
return Lab
|
|
@ -0,0 +1,66 @@
|
|||
#!/usr/bin/python
|
||||
# -*- coding: iso-8859-1 -*-
|
||||
|
||||
import math, convert_colormodels
|
||||
def rad_dif(Msh1,Msh2,white):
|
||||
HSL1 = convert_colormodels.RGB2HSL(convert_colormodels.XYZ2RGB(convert_colormodels.CIELab2XYZ(convert_colormodels.Msh2CIELab(Msh1),white)))
|
||||
HSL2 = convert_colormodels.RGB2HSL(convert_colormodels.XYZ2RGB(convert_colormodels.CIELab2XYZ(convert_colormodels.Msh2CIELab(Msh2),white)))
|
||||
return abs(HSL1[0]*math.pi/180.0-HSL2[0]*math.pi/180.0)
|
||||
|
||||
def adjust_hue(Msh_sat,M_unsat):
|
||||
if Msh_sat[0] >= M_unsat:
|
||||
return Msh_sat[2]
|
||||
else:
|
||||
hSpin = Msh_sat[1]*math.sqrt((M_unsat)**2.0-(Msh_sat[0])**2)/(Msh_sat[0]*math.sin(Msh_sat[1]))
|
||||
if Msh_sat[2] > - math.pi/3.0:
|
||||
return Msh_sat[2] + hSpin
|
||||
else:
|
||||
return Msh_sat[2] - hSpin
|
||||
|
||||
|
||||
def interpolate_color(RGB1,RGB2,white,interp):
|
||||
Msh1 = convert_colormodels.CIELab2Msh(convert_colormodels.XYZ2CIELab(convert_colormodels.RGB2XYZ(RGB1),white))
|
||||
Msh2 = convert_colormodels.CIELab2Msh(convert_colormodels.XYZ2CIELab(convert_colormodels.RGB2XYZ(RGB2),white))
|
||||
Msh_mid = [0.0,0.0,0.0]
|
||||
if ((Msh1[1] > 0.05 and Msh2[1] > 0.05) and rad_dif(Msh1,Msh2,white) > math.pi/3.0):
|
||||
Msh_mid[0] = max(Msh1[0],Msh2[0],88.0)
|
||||
if interp < 0.5:
|
||||
Msh2[0] = Msh_mid[0]
|
||||
Msh2[1] = 0.0
|
||||
Msh2[2] = 0.0
|
||||
interp = 2.0*interp
|
||||
else:
|
||||
Msh1[0] = Msh_mid[0]
|
||||
Msh1[1] = 0.0
|
||||
Msh1[2] = 0.0
|
||||
interp = 2.0*interp - 1.0
|
||||
if (Msh1[1] < 0.05) and (Msh2[1] > 0.05):
|
||||
Msh1[2] = adjust_hue(Msh2,Msh1[0])
|
||||
elif (Msh2[1] < 0.05) and (Msh1[1] > 0.05):
|
||||
Msh2[2] = adjust_hue(Msh1,Msh2[0])
|
||||
for i in range(3):
|
||||
Msh_mid[i] = (1.0-interp)*Msh1[i] + interp* Msh2[i]
|
||||
return convert_colormodels.XYZ2RGB(convert_colormodels.CIELab2XYZ(convert_colormodels.Msh2CIELab(Msh_mid),white))
|
||||
|
||||
test1 = [0.231372549,0.298039216,0.752941176]
|
||||
test2 = [0.705882353,0.015686275,0.149019608]
|
||||
#test1 = [0.0,1.0,24.0/255.0]
|
||||
#test1 = [0.5,0.5,0.5]
|
||||
#test2 = [0.0,151.0/255.0,21.0/255.0]
|
||||
x=0.950456
|
||||
y=1.0
|
||||
z=1.088754
|
||||
white = [x, y, z]
|
||||
test = test1
|
||||
iteration = 33
|
||||
delta = 1.0/float(iteration-1)
|
||||
f = -delta
|
||||
for i in range(iteration):
|
||||
f = f + delta
|
||||
test = test + interpolate_color(test1,test2,white,f)
|
||||
test = test + test2
|
||||
for i in range(iteration):
|
||||
print i
|
||||
print test[3*i+3]*255.0
|
||||
print test[3*i+1+3]*255.0
|
||||
print test[3*i+2+3]*255.0, '\n'
|
|
@ -1,65 +0,0 @@
|
|||
#!/usr/bin/python
|
||||
# -*- coding: iso-8859-1 -*-
|
||||
|
||||
# This script is used to generate colormaps for gmsh (http://geuz.org/gmsh/)
|
||||
# The script writes 360 files. Each file contains one colormap.
|
||||
# More information on the used colors space can be found at http://en.wikipedia.org/wiki/HSL_and_HSV
|
||||
# written by M. Diehl, m.diehl@mpie.de
|
||||
|
||||
import math
|
||||
|
||||
print '******************************************************************************'
|
||||
print ' Write colormaps for gmsh'
|
||||
print ''
|
||||
print 'Suitable for datasets that have only positive/negative values'
|
||||
print 'The colors are described using the HSL model.'
|
||||
print 'Each of the 360 generated colormaps uses one value of (H)ue.'
|
||||
print 'The colormaps runs at constant H from given (L)ightness and (S)aturation'
|
||||
print 'to given L and S'
|
||||
print 'L is distribute linearly, S changes as the square root of a linear list.'
|
||||
print 'Suitable values: L_start = S_start = 1 , L_end = S_end = 0.'
|
||||
print '******************************************************************************'
|
||||
print ''
|
||||
startL = float(raw_input('Please enter start value for (L)ightness: '))
|
||||
endL = float(raw_input('Please enter end value for L: '))
|
||||
startS = float(raw_input('Please enter start value for (S)aturation: '))
|
||||
endS = float(raw_input('Please enter end value for S: '))
|
||||
steps = int(raw_input('Please enter steps/resolution: '))
|
||||
for h in range(0,360):
|
||||
colormap = open('colormap_' + str(h).zfill(3) + '.map',"w")
|
||||
colormap.write('View.ColorTable = {\n')
|
||||
for i in range(0,steps):
|
||||
h_strich = h/60.0
|
||||
if(h_strich>6.0):
|
||||
h_strich = h_strich-6.0
|
||||
c = (1- abs(2*(startL + i*(endL-startL)/steps)-1))*math.sqrt(startS + i*(endS-startS)/steps)
|
||||
x = c*(1- abs(h_strich%2-1))
|
||||
m = (startL + i*(endL-startL)/steps) -.5*c
|
||||
if (0.0 <= h_strich)and(h_strich<1.0):
|
||||
colormap.write('{'+str((c+m)*255.0)+','+str((x+m)*255.0)+','+str((0.0+m)*255.0)+'},\n')
|
||||
elif (1.0 <= h_strich)and(h_strich<2.0):
|
||||
colormap.write('{'+str((x+m)*255.0)+','+str((c+m)*255.0)+','+str((0.0+m)*255.0)+'},\n')
|
||||
elif (2.0 <= h_strich)and(h_strich<3.0):
|
||||
colormap.write('{'+str((0.0+m)*255.0)+','+str((c+m)*255.0)+','+str((x+m)*255.0)+'},\n')
|
||||
elif (3.0 <= h_strich)and(h_strich<4.0):
|
||||
colormap.write('{'+str((0.0+m)*255.0)+','+str((x+m)*255.0)+','+str((c+m)*255.0)+'},\n')
|
||||
elif (4.0 <= h_strich)and(h_strich<5.0):
|
||||
colormap.write('{'+str((x+m)*255.0)+','+str((0.0+m)*255.0)+','+str((c+m)*255.0)+'},\n')
|
||||
elif (5.0 <= h_strich)and(h_strich<=6.0):
|
||||
colormap.write('{'+str((c+m)*255.0)+','+str((0.0+m)*255.0)+','+str((x+m)*255.0)+'},\n')
|
||||
c = (1- abs(2*(startL)-1))*(startS)
|
||||
x = c*(1- abs(h_strich%2-1))
|
||||
m = (startL) -.5*c
|
||||
if (0.0 <= h_strich)and(h_strich<1.0):
|
||||
colormap.write('{'+str((c+m)*255.0)+','+str((x+m)*255.0)+','+str((0.0+m)*255.0)+'}};')
|
||||
elif (1.0 <= h_strich)and(h_strich<2.0):
|
||||
colormap.write('{'+str((x+m)*255.0)+','+str((c+m)*255.0)+','+str((0.0+m)*255.0)+'}};')
|
||||
elif (2.0 <= h_strich)and(h_strich<3.0):
|
||||
colormap.write('{'+str((0.0+m)*255.0)+','+str((c+m)*255.0)+','+str((x+m)*255.0)+'}};')
|
||||
elif (3.0 <= h_strich)and(h_strich<4.0):
|
||||
colormap.write('{'+str((0.0+m)*255.0)+','+str((x+m)*255.0)+','+str((c+m)*255.0)+'}};')
|
||||
elif (4.0 <= h_strich)and(h_strich<5.0):
|
||||
colormap.write('{'+str((x+m)*255.0)+','+str((0.0+m)*255.0)+','+str((c+m)*255.0)+'}};')
|
||||
elif (5.0 <= h_strich)and(h_strich<=6.0):
|
||||
colormap.write('{'+str((c+m)*255.0)+','+str((0.0+m)*255.0)+','+str((x+m)*255.0)+'}};')
|
||||
|
|
@ -1,87 +0,0 @@
|
|||
#!/usr/bin/python
|
||||
# -*- coding: iso-8859-1 -*-
|
||||
|
||||
# This script is used to generate colormaps for gmsh (http://geuz.org/gmsh/)
|
||||
# The script writes 360 files. Each file contains one colormap.
|
||||
# More information on the used colors space can be found at http://en.wikipedia.org/wiki/HSL_and_HSV
|
||||
# written by M. Diehl, m.diehl@mpie.de
|
||||
|
||||
import math
|
||||
|
||||
print '******************************************************************************'
|
||||
print ' Write colormaps for gmsh'
|
||||
print ''
|
||||
print 'Suitable for datasets running from negative to positive values.'
|
||||
print 'The colors are described using the HSL model.'
|
||||
print 'Each of the 360 generated colormaps uses two values of (H)ue.'
|
||||
print 'The colormaps runs at constant H from given (L)ightness and (S)aturation'
|
||||
print 'to given L_min and S_min and goes to H+180° (with given L and S)'
|
||||
print 'Suitable values: L = L_min =.5, S = 1, and S_min=0,'
|
||||
print '******************************************************************************'
|
||||
print ''
|
||||
startL = float(raw_input('Please enter start value for (L)ightness: '))
|
||||
endL = float(raw_input('Please enter minimum value for L: '))
|
||||
startS = float(raw_input('Please enter start value for (S)aturation: '))
|
||||
endS = float(raw_input('Please enter minimum value for S: '))
|
||||
steps = int(raw_input('Please enter steps/resolution: '))
|
||||
steps = steps/2
|
||||
for h in range(0,360):
|
||||
colormap = open('colormap_' + str(h).zfill(3) + '.map',"w")
|
||||
colormap.write('View.ColorTable = {\n')
|
||||
i=0
|
||||
h_strich = h/60.0
|
||||
if(h_strich>6.0):
|
||||
h_strich = h_strich-6.0
|
||||
for j in range(0,steps+1):
|
||||
# let L run linearly from 0 to 1, let S be the square root of a linear list from 0 to 1
|
||||
c = (1- abs(2*(startL - j*(startL-endL)/steps)-1))*(startS - j*(startS-endS)/steps)
|
||||
x = c*(1- abs(h_strich%2-1))
|
||||
m = (startL - j*(startL-endL)/steps) -.5*c
|
||||
if (0.0 <= h_strich)and(h_strich<1.0):
|
||||
colormap.write('{'+str((c+m)*255.0)+','+str((x+m)*255.0)+','+str((0.0+m)*255.0)+'},\n')
|
||||
elif (1.0 <= h_strich)and(h_strich<2.0):
|
||||
colormap.write('{'+str((x+m)*255.0)+','+str((c+m)*255.0)+','+str((0.0+m)*255.0)+'},\n')
|
||||
elif (2.0 <= h_strich)and(h_strich<3.0):
|
||||
colormap.write('{'+str((0.0+m)*255.0)+','+str((c+m)*255.0)+','+str((x+m)*255.0)+'},\n')
|
||||
elif (3.0 <= h_strich)and(h_strich<4.0):
|
||||
colormap.write('{'+str((0.0+m)*255.0)+','+str((x+m)*255.0)+','+str((c+m)*255.0)+'},\n')
|
||||
elif (4.0 <= h_strich)and(h_strich<5.0):
|
||||
colormap.write('{'+str((x+m)*255.0)+','+str((0.0+m)*255.0)+','+str((c+m)*255.0)+'},\n')
|
||||
elif (5.0 <= h_strich)and(h_strich<=6.0):
|
||||
colormap.write('{'+str((c+m)*255.0)+','+str((0.0+m)*255.0)+','+str((x+m)*255.0)+'},\n')
|
||||
i = i+1
|
||||
h_strich = (h+180.0)/60.0
|
||||
if(h_strich>6.0):
|
||||
h_strich = h_strich-6.0
|
||||
for j in range(1,steps):
|
||||
c = (1- abs(2*(endL+j*(startL-endL)/steps)-1))*(endS+j*(startS-endS)/steps)
|
||||
x = c*(1- abs(h_strich%2-1))
|
||||
m = (endL+j*(startL-endL)/steps) -.5*c
|
||||
if (0.0 <= h_strich)and(h_strich<1.0):
|
||||
colormap.write('{'+str((c+m)*255.0)+','+str((x+m)*255.0)+','+str((0.0+m)*255.0)+'},\n')
|
||||
elif (1.0 <= h_strich)and(h_strich<2.0):
|
||||
colormap.write('{'+str((x+m)*255.0)+','+str((c+m)*255.0)+','+str((0.0+m)*255.0)+'},\n')
|
||||
elif (2.0 <= h_strich)and(h_strich<3.0):
|
||||
colormap.write('{'+str((0.0+m)*255.0)+','+str((c+m)*255.0)+','+str((x+m)*255.0)+'},\n')
|
||||
elif (3.0 <= h_strich)and(h_strich<4.0):
|
||||
colormap.write('{'+str((0.0+m)*255.0)+','+str((x+m)*255.0)+','+str((c+m)*255.0)+'},\n')
|
||||
elif (4.0 <= h_strich)and(h_strich<5.0):
|
||||
colormap.write('{'+str((x+m)*255.0)+','+str((0.0+m)*255.0)+','+str((c+m)*255.0)+'},\n')
|
||||
elif (5.0 <= h_strich)and(h_strich<=6.0):
|
||||
colormap.write('{'+str((c+m)*255.0)+','+str((0.0+m)*255.0)+','+str((x+m)*255.0)+'},\n')
|
||||
i=i+1
|
||||
c = (1- abs(2*(startL)-1))*(startS)
|
||||
x = c*(1- abs(h_strich%2-1))
|
||||
m = (startL) -.5*c
|
||||
if (0.0 <= h_strich)and(h_strich<1.0):
|
||||
colormap.write('{'+str((c+m)*255.0)+','+str((x+m)*255.0)+','+str((0.0+m)*255.0)+'}};')
|
||||
elif (1.0 <= h_strich)and(h_strich<2.0):
|
||||
colormap.write('{'+str((x+m)*255.0)+','+str((c+m)*255.0)+','+str((0.0+m)*255.0)+'}};')
|
||||
elif (2.0 <= h_strich)and(h_strich<3.0):
|
||||
colormap.write('{'+str((0.0+m)*255.0)+','+str((c+m)*255.0)+','+str((x+m)*255.0)+'}};')
|
||||
elif (3.0 <= h_strich)and(h_strich<4.0):
|
||||
colormap.write('{'+str((0.0+m)*255.0)+','+str((x+m)*255.0)+','+str((c+m)*255.0)+'}};')
|
||||
elif (4.0 <= h_strich)and(h_strich<5.0):
|
||||
colormap.write('{'+str((x+m)*255.0)+','+str((0.0+m)*255.0)+','+str((c+m)*255.0)+'}};')
|
||||
elif (5.0 <= h_strich)and(h_strich<=6.0):
|
||||
colormap.write('{'+str((c+m)*255.0)+','+str((0.0+m)*255.0)+','+str((x+m)*255.0)+'}};')
|
|
@ -1,50 +0,0 @@
|
|||
#!/usr/bin/python
|
||||
# -*- coding: iso-8859-1 -*-
|
||||
|
||||
# This script is used to generate colormaps for paraview (www.paraview.org)
|
||||
# The script writes 360 files. Each file contains one colormap.
|
||||
# More information on the used colors space can be found at http://en.wikipedia.org/wiki/HSL_and_HSV
|
||||
# written by M. Diehl, m.diehl@mpie.de
|
||||
|
||||
import math
|
||||
|
||||
print '******************************************************************************'
|
||||
print ' Write colormaps for paraview'
|
||||
print ''
|
||||
print 'Suitable for datasets that have only positive/negative values'
|
||||
print 'The colors are described using the HSL model.'
|
||||
print 'Each of the 360 generated colormaps uses one value of (H)ue.'
|
||||
print 'The colormaps runs at constant H from given (L)ightness and (S)aturation'
|
||||
print 'to given L and S'
|
||||
print 'L is distribute linearly, S changes as the square root of a linear list.'
|
||||
print 'Suitable values: L_start = S_start = 1 , L_end = S_end = 0.'
|
||||
print '******************************************************************************'
|
||||
print ''
|
||||
startL = float(raw_input('Please enter start value for (L)ightness: '))
|
||||
endL = float(raw_input('Please enter end value for L: '))
|
||||
startS = float(raw_input('Please enter start value for (S)aturation: '))
|
||||
endS = float(raw_input('Please enter end value for S: '))
|
||||
steps = int(raw_input('Please enter steps/resolution: '))
|
||||
for h in range(0,360):
|
||||
colormap = open('colormap_' + str(h) + '.xml',"w")
|
||||
colormap.write('<ColorMap name = "' + str(h) + '" space = "RGB">\n')
|
||||
for i in range(0,steps+1):
|
||||
h_strich = h/60.0
|
||||
if(h_strich>6.0):
|
||||
h_strich = h_strich-6.0
|
||||
c = (1- abs(2*(startL + i*(endL-startL)/steps)-1))*math.sqrt(startS + i*(endS-startS)/steps)
|
||||
x = c*(1- abs(h_strich%2-1))
|
||||
m = (startL + i*(endL-startL)/steps) -.5*c
|
||||
if (0.0 <= h_strich)and(h_strich<1.0):
|
||||
colormap.write('<Point x="'+str(i)+'" o="1" r="'+str(c+m)+'" g="'+str(x+m)+'" b="'+str(0.0+m)+'"/>\n')
|
||||
elif (1.0 <= h_strich)and(h_strich<2.0):
|
||||
colormap.write('<Point x="'+str(i)+'" o="1" r="'+str(x+m)+'" g="'+str(c+m)+'" b="'+str(0.0+m)+'"/>\n')
|
||||
elif (2.0 <= h_strich)and(h_strich<3.0):
|
||||
colormap.write('<Point x="'+str(i)+'" o="1" r="'+str(0.0+m)+'" g="'+str(c+m)+'" b="'+str(x+m)+'"/>\n')
|
||||
elif (3.0 <= h_strich)and(h_strich<4.0):
|
||||
colormap.write('<Point x="'+str(i)+'" o="1" r="'+str(0.0+m)+'" g="'+str(x+m)+'" b="'+str(c+m)+'"/>\n')
|
||||
elif (4.0 <= h_strich)and(h_strich<5.0):
|
||||
colormap.write('<Point x="'+str(i)+'" o="1" r="'+str(x+m)+'" g="'+str(0.0+m)+'" b="'+str(c+m)+'"/>\n')
|
||||
elif (5.0 <= h_strich)and(h_strich<=6.0):
|
||||
colormap.write('<Point x="'+str(i)+'" o="1" r="'+str(c+m)+'" g="'+str(0.0+m)+'" b="'+str(x+m)+'"/>\n')
|
||||
colormap.write('</ColorMap>')
|
|
@ -1,73 +0,0 @@
|
|||
#!/usr/bin/python
|
||||
# -*- coding: iso-8859-1 -*-
|
||||
|
||||
# This script is used to generate colormaps for paraview (www.paraview.org)
|
||||
# The script writes 360 files. Each file contains one colormap.
|
||||
# More information on the used colors space can be found at http://en.wikipedia.org/wiki/HSL_and_HSV
|
||||
# written by M. Diehl, m.diehl@mpie.de
|
||||
|
||||
import math
|
||||
|
||||
print '******************************************************************************'
|
||||
print ' Write colormaps for paraview'
|
||||
print ''
|
||||
print 'Suitable for datasets running from negative to positive values.'
|
||||
print 'The colors are described using the HSL model.'
|
||||
print 'Each of the 360 generated colormaps uses two values of (H)ue.'
|
||||
print 'The colormaps runs at constant H from given (L)ightness and (S)aturation'
|
||||
print 'to given L_min and S_min and goes to H+180° (with given L and S)'
|
||||
print 'Suitable values: L = L_min =.5, S = 1, and S_min=0,'
|
||||
print '******************************************************************************'
|
||||
print ''
|
||||
startL = float(raw_input('Please enter start value for (L)ightness: '))
|
||||
endL = float(raw_input('Please enter minimum value for L: '))
|
||||
startS = float(raw_input('Please enter start value for (S)aturation: '))
|
||||
endS = float(raw_input('Please enter minimum value for S: '))
|
||||
steps = int(raw_input('Please enter steps/resolution: '))
|
||||
steps = steps/2
|
||||
for h in range(0,360):
|
||||
colormap = open('colormap_' + str(h).zfill(3) + '.xml',"w")
|
||||
colormap.write('<ColorMap name = "Complementary Color ' + str(h).zfill(3) + '" space = "RGB">\n')
|
||||
i=0
|
||||
h_strich = h/60.0
|
||||
if(h_strich>6.0):
|
||||
h_strich = h_strich-6.0
|
||||
for j in range(0,steps+1):
|
||||
# let L run linearly from 0 to 1, let S be the square root of a linear list from 0 to 1
|
||||
c = (1- abs(2*(startL - j*(startL-endL)/steps)-1))*(startS - j*(startS-endS)/steps)
|
||||
x = c*(1- abs(h_strich%2-1))
|
||||
m = (startL - j*(startL-endL)/steps) -.5*c
|
||||
if (0.0 <= h_strich)and(h_strich<1.0):
|
||||
colormap.write('<Point x="'+str(i)+'" o="1" r="'+str(c+m)+'" g="'+str(x+m)+'" b="'+str(0.0+m)+'"/>\n')
|
||||
elif (1.0 <= h_strich)and(h_strich<2.0):
|
||||
colormap.write('<Point x="'+str(i)+'" o="1" r="'+str(x+m)+'" g="'+str(c+m)+'" b="'+str(0.0+m)+'"/>\n')
|
||||
elif (2.0 <= h_strich)and(h_strich<3.0):
|
||||
colormap.write('<Point x="'+str(i)+'" o="1" r="'+str(0.0+m)+'" g="'+str(c+m)+'" b="'+str(x+m)+'"/>\n')
|
||||
elif (3.0 <= h_strich)and(h_strich<4.0):
|
||||
colormap.write('<Point x="'+str(i)+'" o="1" r="'+str(0.0+m)+'" g="'+str(x+m)+'" b="'+str(c+m)+'"/>\n')
|
||||
elif (4.0 <= h_strich)and(h_strich<5.0):
|
||||
colormap.write('<Point x="'+str(i)+'" o="1" r="'+str(x+m)+'" g="'+str(0.0+m)+'" b="'+str(c+m)+'"/>\n')
|
||||
elif (5.0 <= h_strich)and(h_strich<=6.0):
|
||||
colormap.write('<Point x="'+str(i)+'" o="1" r="'+str(c+m)+'" g="'+str(0.0+m)+'" b="'+str(x+m)+'"/>\n')
|
||||
i = i+1
|
||||
h_strich = (h+180.0)/60.0
|
||||
if(h_strich>6.0):
|
||||
h_strich = h_strich-6.0
|
||||
for j in range(1,steps+1):
|
||||
c = (1- abs(2*(endL+j*(startL-endL)/steps)-1))*(endS+j*(startS-endS)/steps)
|
||||
x = c*(1- abs(h_strich%2-1))
|
||||
m = (endL+j*(startL-endL)/steps) -.5*c
|
||||
if (0.0 <= h_strich)and(h_strich<1.0):
|
||||
colormap.write('<Point x="'+str(i)+'" o="1" r="'+str(c+m)+'" g="'+str(x+m)+'" b="'+str(0.0+m)+'"/>\n')
|
||||
elif (1.0 <= h_strich)and(h_strich<2.0):
|
||||
colormap.write('<Point x="'+str(i)+'" o="1" r="'+str(x+m)+'" g="'+str(c+m)+'" b="'+str(0.0+m)+'"/>\n')
|
||||
elif (2.0 <= h_strich)and(h_strich<3.0):
|
||||
colormap.write('<Point x="'+str(i)+'" o="1" r="'+str(0.0+m)+'" g="'+str(c+m)+'" b="'+str(x+m)+'"/>\n')
|
||||
elif (3.0 <= h_strich)and(h_strich<4.0):
|
||||
colormap.write('<Point x="'+str(i)+'" o="1" r="'+str(0.0+m)+'" g="'+str(x+m)+'" b="'+str(c+m)+'"/>\n')
|
||||
elif (4.0 <= h_strich)and(h_strich<5.0):
|
||||
colormap.write('<Point x="'+str(i)+'" o="1" r="'+str(x+m)+'" g="'+str(0.0+m)+'" b="'+str(c+m)+'"/>\n')
|
||||
elif (5.0 <= h_strich)and(h_strich<=6.0):
|
||||
colormap.write('<Point x="'+str(i)+'" o="1" r="'+str(c+m)+'" g="'+str(0.0+m)+'" b="'+str(x+m)+'"/>\n')
|
||||
i=i+1
|
||||
colormap.write('</ColorMap>')
|
|
@ -869,6 +869,66 @@ subroutine calculate_mises(res_x,res_y,res_z,tensor,vm)
|
|||
enddo; enddo; enddo
|
||||
end subroutine calculate_mises
|
||||
|
||||
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
subroutine curl_fft(res_x,res_y,res_z,vec_tens,geomdim,field,divergence_field)
|
||||
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
! calculates divergence field using integration in Fourier space
|
||||
!use vec_tens to decide if tensor (3) or vector (1)
|
||||
|
||||
implicit none
|
||||
integer res_x, res_y, res_z, vec_tens
|
||||
real*8 geomdim(3)
|
||||
real*8 field(res_x,res_y,res_z,vec_tens,3)
|
||||
real*8 curl_fft(res_x,res_y,res_z,vec_tens,3)
|
||||
complex*8 field_fft(res_x/2_pInt+1,res_y,res_z,vec_tens,3)
|
||||
real*8 xi(res_x,res_y,res_z,3)
|
||||
complex*16 img
|
||||
integer i, j, k
|
||||
real*8, parameter :: pi = 3.14159265358979323846264338327950288419716939937510
|
||||
integer*8 :: plan_fft(2)
|
||||
|
||||
img = cmplx(0.0,1.0)
|
||||
|
||||
call dfftw_plan_many_dft_r2c(plan_fft(1),3,(/res_x,res_y,res_z/),vec_tens*3,&
|
||||
curl_fft,(/res_x,res_y,res_z/),1,res_x*res_y*res_z,&
|
||||
field_fft,(/res_x/2+1,res_y,res_z/),1,(res_x/2+1)*res_y*res_z,32) ! 32 =FFTW_PATIENT
|
||||
|
||||
call dfftw_plan_many_dft_c2r(plan_fft(2),3,(/res_x,res_y,res_z/),vec_tens*3,&
|
||||
field_fft,(/res_x/2+1,res_y,res_z/),1,(res_x/2+1)*res_y*res_z,&
|
||||
curl_fft,(/res_x,res_y,res_z/),1,res_x*res_y*res_z,32) ! 32 = FFTW_PATIENT
|
||||
|
||||
! field_copy is destroyed during plan creation
|
||||
curl_fft = field
|
||||
|
||||
call dfftw_execute_dft_r2c(plan_fft(1), field_copy, field_fft)
|
||||
|
||||
xi = 0.0
|
||||
|
||||
do k = 0, res_z-1
|
||||
do j = 0, res_y-1
|
||||
do i = 0, res_x/2
|
||||
xi(i+1,j+1,k+1,:) = (/real(i),real(j),real(k)/)/geomdim
|
||||
if(k==res_z/2) xi(i+1,j+1,k+1,3)= 0.0 ! set highest frequencies to zero
|
||||
if(j==res_y/2) xi(i+1,j+1,k+1,2)= 0.0
|
||||
if(i==res_x/2) xi(i+1,j+1,k+1,1)= 0.0
|
||||
enddo; enddo; enddo
|
||||
|
||||
|
||||
do k = 1, res_z
|
||||
do j = 1, res_y
|
||||
do i = 1, res_x/2+1
|
||||
divergence_field_fft(i,j,k,1) = sum(field_fft(i,j,k,1,:)*xi(i,j,k,:))
|
||||
if(vec_tens == 3) then
|
||||
divergence_field_fft(i,j,k,2) = sum(field_fft(i,j,k,2,:)*xi(i,j,k,:))
|
||||
divergence_field_fft(i,j,k,3) = sum(field_fft(i,j,k,3,:)*xi(i,j,k,:))
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
divergence_field_fft = divergence_field_fft*img*2.0*pi
|
||||
|
||||
call dfftw_execute_dft_c2r(plan_fft(2), divergence_field_fft, divergence_field)
|
||||
|
||||
end subroutine curl_fft
|
||||
|
||||
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
subroutine divergence_fft(res_x,res_y,res_z,vec_tens,geomdim,field,divergence_field)
|
||||
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
|
|
Loading…
Reference in New Issue