clearer names

This commit is contained in:
Martin Diehl 2020-03-02 23:11:05 +01:00
parent 4970f22e13
commit 15c3cab549
1 changed files with 49 additions and 48 deletions

View File

@ -21,21 +21,21 @@ def Cauchy(P,F):
return symmetric(sigma) return symmetric(sigma)
def deviatoric_part(x): def deviatoric_part(T):
""" """
Return deviatoric part of a tensor. Return deviatoric part of a tensor.
Parameters Parameters
---------- ----------
x : numpy.array of shape (:,3,3) or (3,3) T : numpy.array of shape (:,3,3) or (3,3)
Tensor of which the deviatoric part is computed. Tensor of which the deviatoric part is computed.
""" """
return x - np.eye(3)*spherical_part(x) if np.shape(x) == (3,3) else \ return T - np.eye(3)*spherical_part(T) if np.shape(T) == (3,3) else \
x - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[x.shape[0],3,3]),spherical_part(x)) T - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[T.shape[0],3,3]),spherical_part(T))
def eigenvalues(x): def eigenvalues(T_sym):
""" """
Return the eigenvalues, i.e. principal components, of a symmetric tensor. Return the eigenvalues, i.e. principal components, of a symmetric tensor.
@ -44,14 +44,14 @@ def eigenvalues(x):
Parameters Parameters
---------- ----------
x : numpy.array of shape (:,3,3) or (3,3) T_sym : numpy.array of shape (:,3,3) or (3,3)
Symmetric tensor of which the eigenvalues are computed. Symmetric tensor of which the eigenvalues are computed.
""" """
return np.linalg.eigvalsh(symmetric(x)) return np.linalg.eigvalsh(symmetric(T_sym))
def eigenvectors(x,RHS=False): def eigenvectors(T_sym,RHS=False):
""" """
Return eigenvectors of a symmetric tensor. Return eigenvectors of a symmetric tensor.
@ -59,47 +59,47 @@ def eigenvectors(x,RHS=False):
Parameters Parameters
---------- ----------
x : numpy.array of shape (:,3,3) or (3,3) T_sym : numpy.array of shape (:,3,3) or (3,3)
Symmetric tensor of which the eigenvectors are computed. Symmetric tensor of which the eigenvectors are computed.
RHS: bool, optional RHS: bool, optional
Enforce right-handed coordinate system. Default is False. Enforce right-handed coordinate system. Default is False.
""" """
(u,v) = np.linalg.eigh(symmetric(x)) (u,v) = np.linalg.eigh(symmetric(T_sym))
if RHS: if RHS:
if np.shape(x) == (3,3): if np.shape(T_sym) == (3,3):
if np.linalg.det(v) < 0.0: v[:,2] *= -1.0 if np.linalg.det(v) < 0.0: v[:,2] *= -1.0
else: else:
v[np.linalg.det(v) < 0.0,:,2] *= -1.0 v[np.linalg.det(v) < 0.0,:,2] *= -1.0
return v return v
def left_stretch(x): def left_stretch(T):
""" """
Return the left stretch of a tensor. Return the left stretch of a tensor.
Parameters Parameters
---------- ----------
x : numpy.array of shape (:,3,3) or (3,3) T : numpy.array of shape (:,3,3) or (3,3)
Tensor of which the left stretch is computed. Tensor of which the left stretch is computed.
""" """
return __polar_decomposition(x,'V')[0] return __polar_decomposition(T,'V')[0]
def maximum_shear(x): def maximum_shear(T_sym):
""" """
Return the maximum shear component of a symmetric tensor. Return the maximum shear component of a symmetric tensor.
Parameters Parameters
---------- ----------
x : numpy.array of shape (:,3,3) or (3,3) T_sym : numpy.array of shape (:,3,3) or (3,3)
Symmetric tensor of which the maximum shear is computed. Symmetric tensor of which the maximum shear is computed.
""" """
w = eigenvalues(x) w = eigenvalues(T_sym)
return (w[0] - w[2])*0.5 if np.shape(x) == (3,3) else \ return (w[0] - w[2])*0.5 if np.shape(T_sym) == (3,3) else \
(w[:,0] - w[:,2])*0.5 (w[:,0] - w[:,2])*0.5
@ -147,53 +147,54 @@ def PK2(P,F):
S = np.einsum('ijk,ikl->ijl',np.linalg.inv(F),P) S = np.einsum('ijk,ikl->ijl',np.linalg.inv(F),P)
return symmetric(S) return symmetric(S)
def right_stretch(x):
def right_stretch(T):
""" """
Return the right stretch of a tensor. Return the right stretch of a tensor.
Parameters Parameters
---------- ----------
x : numpy.array of shape (:,3,3) or (3,3) T : numpy.array of shape (:,3,3) or (3,3)
Tensor of which the right stretch is computed. Tensor of which the right stretch is computed.
""" """
return __polar_decomposition(x,'U')[0] return __polar_decomposition(T,'U')[0]
def rotational_part(x): def rotational_part(T):
""" """
Return the rotational part of a tensor. Return the rotational part of a tensor.
Parameters Parameters
---------- ----------
x : numpy.array of shape (:,3,3) or (3,3) T : numpy.array of shape (:,3,3) or (3,3)
Tensor of which the rotational part is computed. Tensor of which the rotational part is computed.
""" """
return __polar_decomposition(x,'R')[0] return __polar_decomposition(T,'R')[0]
def spherical_part(x,tensor=False): def spherical_part(T,tensor=False):
""" """
Return spherical (hydrostatic) part of a tensor. Return spherical (hydrostatic) part of a tensor.
Parameters Parameters
---------- ----------
x : numpy.array of shape (:,3,3) or (3,3) T : numpy.array of shape (:,3,3) or (3,3)
Tensor of which the hydrostatic part is computed. Tensor of which the hydrostatic part is computed.
tensor : bool, optional tensor : bool, optional
Map spherical part onto identity tensor. Default is false Map spherical part onto identity tensor. Default is false
""" """
if x.shape == (3,3): if T.shape == (3,3):
sph = np.trace(x)/3.0 sph = np.trace(T)/3.0
return sph if not tensor else np.eye(3)*sph return sph if not tensor else np.eye(3)*sph
else: else:
sph = np.trace(x,axis1=1,axis2=2)/3.0 sph = np.trace(T,axis1=1,axis2=2)/3.0
if not tensor: if not tensor:
return sph return sph
else: else:
return np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),(x.shape[0],3,3)),sph) return np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),(T.shape[0],3,3)),sph)
def strain_tensor(F,t,m): def strain_tensor(F,t,m):
@ -234,73 +235,73 @@ def strain_tensor(F,t,m):
eps eps
def symmetric(x): def symmetric(T):
""" """
Return the symmetrized tensor. Return the symmetrized tensor.
Parameters Parameters
---------- ----------
x : numpy.array of shape (:,3,3) or (3,3) T : numpy.array of shape (:,3,3) or (3,3)
Tensor of which the symmetrized values are computed. Tensor of which the symmetrized values are computed.
""" """
return (x+transpose(x))*0.5 return (T+transpose(T))*0.5
def transpose(x): def transpose(T):
""" """
Return the transpose of a tensor. Return the transpose of a tensor.
Parameters Parameters
---------- ----------
x : numpy.array of shape (:,3,3) or (3,3) T : numpy.array of shape (:,3,3) or (3,3)
Tensor of which the transpose is computed. Tensor of which the transpose is computed.
""" """
return x.T if np.shape(x) == (3,3) else \ return T.T if np.shape(T) == (3,3) else \
np.transpose(x,(0,2,1)) np.transpose(T,(0,2,1))
def __polar_decomposition(x,requested): def __polar_decomposition(T,requested):
""" """
Singular value decomposition. Singular value decomposition.
Parameters Parameters
---------- ----------
x : numpy.array of shape (:,3,3) or (3,3) T : numpy.array of shape (:,3,3) or (3,3)
Tensor of which the singular values are computed. Tensor of which the singular values are computed.
requested : iterable of str requested : iterable of str
Requested outputs: R for the rotation tensor, Requested outputs: R for the rotation tensor,
V for left stretch tensor and U for right stretch tensor. V for left stretch tensor and U for right stretch tensor.
""" """
u, s, vh = np.linalg.svd(x) u, s, vh = np.linalg.svd(T)
R = np.dot(u,vh) if np.shape(x) == (3,3) else \ R = np.dot(u,vh) if np.shape(T) == (3,3) else \
np.einsum('ijk,ikl->ijl',u,vh) np.einsum('ijk,ikl->ijl',u,vh)
output = [] output = []
if 'R' in requested: if 'R' in requested:
output.append(R) output.append(R)
if 'V' in requested: if 'V' in requested:
output.append(np.dot(x,R.T) if np.shape(x) == (3,3) else np.einsum('ijk,ilk->ijl',x,R)) output.append(np.dot(T,R.T) if np.shape(T) == (3,3) else np.einsum('ijk,ilk->ijl',T,R))
if 'U' in requested: if 'U' in requested:
output.append(np.dot(R.T,x) if np.shape(x) == (3,3) else np.einsum('ikj,ikl->ijl',R,x)) output.append(np.dot(R.T,T) if np.shape(T) == (3,3) else np.einsum('ikj,ikl->ijl',R,T))
return tuple(output) return tuple(output)
def __Mises(x,s): def __Mises(T_sym,s):
""" """
Base equation for Mises equivalent of a stres or strain tensor. Base equation for Mises equivalent of a stres or strain tensor.
Parameters Parameters
---------- ----------
x : numpy.array of shape (:,3,3) or (3,3) T_sym : numpy.array of shape (:,3,3) or (3,3)
Symmetric tensor of which the von Mises equivalent is computed. Symmetric tensor of which the von Mises equivalent is computed.
s : float s : float
Scaling factor (2/3 for strain, 3/2 for stress). Scaling factor (2/3 for strain, 3/2 for stress).
""" """
d = deviatoric_part(x) d = deviatoric_part(T_sym)
return np.sqrt(s*(np.sum(d**2.0))) if np.shape(x) == (3,3) else \ return np.sqrt(s*(np.sum(d**2.0))) if np.shape(T_sym) == (3,3) else \
np.sqrt(s*np.einsum('ijk->i',d**2.0)) np.sqrt(s*np.einsum('ijk->i',d**2.0))