diff --git a/python/damask/mechanics.py b/python/damask/mechanics.py index 9ffd76536..29c405b7d 100644 --- a/python/damask/mechanics.py +++ b/python/damask/mechanics.py @@ -21,21 +21,21 @@ def Cauchy(P,F): return symmetric(sigma) -def deviatoric_part(x): +def deviatoric_part(T): """ Return deviatoric part of a tensor. Parameters ---------- - x : numpy.array of shape (:,3,3) or (3,3) + T : numpy.array of shape (:,3,3) or (3,3) Tensor of which the deviatoric part is computed. """ - return x - np.eye(3)*spherical_part(x) if np.shape(x) == (3,3) else \ - x - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[x.shape[0],3,3]),spherical_part(x)) + return T - np.eye(3)*spherical_part(T) if np.shape(T) == (3,3) else \ + T - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[T.shape[0],3,3]),spherical_part(T)) -def eigenvalues(x): +def eigenvalues(T_sym): """ Return the eigenvalues, i.e. principal components, of a symmetric tensor. @@ -44,14 +44,14 @@ def eigenvalues(x): Parameters ---------- - x : numpy.array of shape (:,3,3) or (3,3) + T_sym : numpy.array of shape (:,3,3) or (3,3) Symmetric tensor of which the eigenvalues are computed. """ - return np.linalg.eigvalsh(symmetric(x)) + return np.linalg.eigvalsh(symmetric(T_sym)) -def eigenvectors(x,RHS=False): +def eigenvectors(T_sym,RHS=False): """ Return eigenvectors of a symmetric tensor. @@ -59,47 +59,47 @@ def eigenvectors(x,RHS=False): Parameters ---------- - x : numpy.array of shape (:,3,3) or (3,3) + T_sym : numpy.array of shape (:,3,3) or (3,3) Symmetric tensor of which the eigenvectors are computed. RHS: bool, optional Enforce right-handed coordinate system. Default is False. """ - (u,v) = np.linalg.eigh(symmetric(x)) + (u,v) = np.linalg.eigh(symmetric(T_sym)) if RHS: - if np.shape(x) == (3,3): + if np.shape(T_sym) == (3,3): if np.linalg.det(v) < 0.0: v[:,2] *= -1.0 else: v[np.linalg.det(v) < 0.0,:,2] *= -1.0 return v -def left_stretch(x): +def left_stretch(T): """ Return the left stretch of a tensor. Parameters ---------- - x : numpy.array of shape (:,3,3) or (3,3) + T : numpy.array of shape (:,3,3) or (3,3) Tensor of which the left stretch is computed. """ - return __polar_decomposition(x,'V')[0] + return __polar_decomposition(T,'V')[0] -def maximum_shear(x): +def maximum_shear(T_sym): """ Return the maximum shear component of a symmetric tensor. Parameters ---------- - x : numpy.array of shape (:,3,3) or (3,3) + T_sym : numpy.array of shape (:,3,3) or (3,3) Symmetric tensor of which the maximum shear is computed. """ - w = eigenvalues(x) - return (w[0] - w[2])*0.5 if np.shape(x) == (3,3) else \ + w = eigenvalues(T_sym) + return (w[0] - w[2])*0.5 if np.shape(T_sym) == (3,3) else \ (w[:,0] - w[:,2])*0.5 @@ -147,53 +147,54 @@ def PK2(P,F): S = np.einsum('ijk,ikl->ijl',np.linalg.inv(F),P) return symmetric(S) -def right_stretch(x): + +def right_stretch(T): """ Return the right stretch of a tensor. Parameters ---------- - x : numpy.array of shape (:,3,3) or (3,3) + T : numpy.array of shape (:,3,3) or (3,3) Tensor of which the right stretch is computed. """ - return __polar_decomposition(x,'U')[0] + return __polar_decomposition(T,'U')[0] -def rotational_part(x): +def rotational_part(T): """ Return the rotational part of a tensor. Parameters ---------- - x : numpy.array of shape (:,3,3) or (3,3) + T : numpy.array of shape (:,3,3) or (3,3) Tensor of which the rotational part is computed. """ - return __polar_decomposition(x,'R')[0] + return __polar_decomposition(T,'R')[0] -def spherical_part(x,tensor=False): +def spherical_part(T,tensor=False): """ Return spherical (hydrostatic) part of a tensor. Parameters ---------- - x : numpy.array of shape (:,3,3) or (3,3) + T : numpy.array of shape (:,3,3) or (3,3) Tensor of which the hydrostatic part is computed. tensor : bool, optional Map spherical part onto identity tensor. Default is false """ - if x.shape == (3,3): - sph = np.trace(x)/3.0 + if T.shape == (3,3): + sph = np.trace(T)/3.0 return sph if not tensor else np.eye(3)*sph else: - sph = np.trace(x,axis1=1,axis2=2)/3.0 + sph = np.trace(T,axis1=1,axis2=2)/3.0 if not tensor: return sph else: - return np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),(x.shape[0],3,3)),sph) + return np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),(T.shape[0],3,3)),sph) def strain_tensor(F,t,m): @@ -234,73 +235,73 @@ def strain_tensor(F,t,m): eps -def symmetric(x): +def symmetric(T): """ Return the symmetrized tensor. Parameters ---------- - x : numpy.array of shape (:,3,3) or (3,3) + T : numpy.array of shape (:,3,3) or (3,3) Tensor of which the symmetrized values are computed. """ - return (x+transpose(x))*0.5 + return (T+transpose(T))*0.5 -def transpose(x): +def transpose(T): """ Return the transpose of a tensor. Parameters ---------- - x : numpy.array of shape (:,3,3) or (3,3) + T : numpy.array of shape (:,3,3) or (3,3) Tensor of which the transpose is computed. """ - return x.T if np.shape(x) == (3,3) else \ - np.transpose(x,(0,2,1)) + return T.T if np.shape(T) == (3,3) else \ + np.transpose(T,(0,2,1)) -def __polar_decomposition(x,requested): +def __polar_decomposition(T,requested): """ Singular value decomposition. Parameters ---------- - x : numpy.array of shape (:,3,3) or (3,3) + T : numpy.array of shape (:,3,3) or (3,3) Tensor of which the singular values are computed. requested : iterable of str Requested outputs: ‘R’ for the rotation tensor, ‘V’ for left stretch tensor and ‘U’ for right stretch tensor. """ - u, s, vh = np.linalg.svd(x) - R = np.dot(u,vh) if np.shape(x) == (3,3) else \ + u, s, vh = np.linalg.svd(T) + R = np.dot(u,vh) if np.shape(T) == (3,3) else \ np.einsum('ijk,ikl->ijl',u,vh) output = [] if 'R' in requested: output.append(R) if 'V' in requested: - output.append(np.dot(x,R.T) if np.shape(x) == (3,3) else np.einsum('ijk,ilk->ijl',x,R)) + output.append(np.dot(T,R.T) if np.shape(T) == (3,3) else np.einsum('ijk,ilk->ijl',T,R)) if 'U' in requested: - output.append(np.dot(R.T,x) if np.shape(x) == (3,3) else np.einsum('ikj,ikl->ijl',R,x)) + output.append(np.dot(R.T,T) if np.shape(T) == (3,3) else np.einsum('ikj,ikl->ijl',R,T)) return tuple(output) -def __Mises(x,s): +def __Mises(T_sym,s): """ Base equation for Mises equivalent of a stres or strain tensor. Parameters ---------- - x : numpy.array of shape (:,3,3) or (3,3) + T_sym : numpy.array of shape (:,3,3) or (3,3) Symmetric tensor of which the von Mises equivalent is computed. s : float Scaling factor (2/3 for strain, 3/2 for stress). - + """ - d = deviatoric_part(x) - return np.sqrt(s*(np.sum(d**2.0))) if np.shape(x) == (3,3) else \ + d = deviatoric_part(T_sym) + return np.sqrt(s*(np.sum(d**2.0))) if np.shape(T_sym) == (3,3) else \ np.sqrt(s*np.einsum('ijk->i',d**2.0))