fixed missing angle initialization, simplified and commented

This commit is contained in:
Martin Diehl 2018-02-23 11:33:21 +01:00
parent 4f4fa5daf8
commit 0ccce7facc
1 changed files with 59 additions and 83 deletions

View File

@ -1765,20 +1765,26 @@ end function math_sampleRandomOri
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief draw a sample from an Gaussian distribution around given orientation and Full Width !> @brief draw a sample from an Gaussian distribution around given orientation and Full Width
! at Half Maximum (FWHM) ! at Half Maximum (FWHM)
!> @details: for very small FWHM values the given orientation is returned.
!> @details: for intermediate FWHM values, an orientation is picked from uniformly distributed
!> @details: oreintations around the nominal orientation with maximum misorientation of 2*FWHM
!> @deatils: according to https://math.stackexchange.com/questions/13133 followed by
!> @details: the application of a Gaussian filter.
!> @details: for large FWHM values, a random orientation from a uniform distribution is picked
!> @details: followed by tge aookucatuib if a Gaussian filter. Additionally, the misorientation is
!> @details: limited to 2*FWHM,
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function math_sampleGaussOri(center,FWHM) function math_sampleGaussOri(center,FWHM)
use prec, only: &
tol_math_check
implicit none implicit none
real(pReal), intent(in) :: FWHM real(pReal), intent(in) :: FWHM
real(pReal), dimension(3), intent(in) :: center real(pReal), dimension(3), intent(in) :: center
real(pReal) :: omega real(pReal) :: angle
real(pReal), dimension(3) :: math_sampleGaussOri, axis real(pReal), dimension(3) :: math_sampleGaussOri, axis
real(pReal), dimension(2) :: rnd real(pReal), dimension(2) :: rnd
real(pReal), dimension(3,3) :: R real(pReal), dimension(3,3) :: R
noScatter: if (FWHM < 0.5_pReal*INRAD) then noScatter: if (FWHM < 0.1_pReal*INRAD) then
math_sampleGaussOri = center math_sampleGaussOri = center
else noScatter else noScatter
GaussConvolution: do GaussConvolution: do
@ -1786,19 +1792,20 @@ function math_sampleGaussOri(center,FWHM)
rnd = halton([3_pInt,6_pInt]) rnd = halton([3_pInt,6_pInt])
axis(1) = rnd(1)*2.0_pReal-1.0_pReal ! uniform on [-1,1] axis(1) = rnd(1)*2.0_pReal-1.0_pReal ! uniform on [-1,1]
axis(2:3) = [sqrt(1.0-axis(1)**2.0_pReal)*cos(rnd(2)*2.0*PI),& axis(2:3) = [sqrt(1.0-axis(1)**2.0_pReal)*cos(rnd(2)*2.0*PI),&
sqrt(1.0-axis(1)**2.0_pReal)*sin(rnd(2)*2.0*PI)] sqrt(1.0-axis(1)**2.0_pReal)*sin(rnd(2)*2.0*PI)] ! random axis
do do
rnd = halton([14_pInt,10_pInt]) rnd = halton([14_pInt,10_pInt])
omega = (rnd(1)*(2.0_pReal*FWHM)**3.0_pReal)**(1.0_pReal/3.0_pReal) angle = (rnd(1)*(2.0_pReal*FWHM)**3.0_pReal)**(1.0_pReal/3.0_pReal) ! maximum misorientation of 2*FWHM
if (rnd(2) < sin(omega)**2.0_pReal/omega**2.0_pReal) exit if (rnd(2) < sin(angle)**2.0_pReal/angle**2.0_pReal) exit ! rejection sampling
enddo enddo
R = math_axisAngleToR(axis,omega) R = math_axisAngleToR(axis,angle)
else selectiveSampling else selectiveSampling
R = math_EulerToR(math_sampleRandomOri()) R = math_EulerToR(math_sampleRandomOri())
endif selectiveSampling endif selectiveSampling
rnd = halton([8_pInt,11_pInt]) rnd = halton([8_pInt,11_pInt])
omega = math_EulerMisorientation([0.0_pReal,0.0_pReal,0.0_pReal],math_RtoEuler(R)) angle = math_EulerMisorientation([0.0_pReal,0.0_pReal,0.0_pReal],math_RtoEuler(R))
if (rnd(1) <= exp(-4.0_pReal*log(2.0_pReal)*(omega/FWHM)**2_pReal)) exit if (rnd(1) <= exp(-4.0_pReal*log(2.0_pReal)*(angle/FWHM)**2_pReal) .and. & ! rejection sampling (Gaussian)
angle < 2.0_pReal * FWHM) exit ! limit (in case of non-selective orientation selection
enddo GaussConvolution enddo GaussConvolution
math_sampleGaussOri = math_RtoEuler(math_mul33x33(R,math_EulerToR(center))) math_sampleGaussOri = math_RtoEuler(math_mul33x33(R,math_EulerToR(center)))
@ -1807,74 +1814,52 @@ function math_sampleGaussOri(center,FWHM)
end function math_sampleGaussOri end function math_sampleGaussOri
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief draw a sample from an Gaussian distribution around given fiber texture and Full Width !> @brief draw a sample from an Gaussian distribution around given fiber texture and Full Width
! at Half Maximum (FWHM) ! at Half Maximum (FWHM)
!>@details: vector in cone around axis is uniformly distributed according to
! https://math.stackexchange.com/questions/56784
!------------------------------------------------------------------------------------------------- !-------------------------------------------------------------------------------------------------
function math_sampleFiberOri(alpha,beta,FWHM) function math_sampleFiberOri(alpha,beta,FWHM)
use prec, only: &
tol_math_check
implicit none implicit none
real(pReal), dimension(2), intent(in) :: alpha,beta real(pReal), dimension(2), intent(in) :: alpha,beta
real(pReal), intent(in) :: FWHM real(pReal), intent(in) :: FWHM
real(pReal), dimension(3) :: math_sampleFiberOri, fiberInC,fiberInS,axis real(pReal), dimension(3) :: math_sampleFiberOri, &
real(pReal), dimension(6) :: rnd fInC,& !< fiber axis in crystal coordinate system
real(pReal), dimension(3,3) :: oRot,fRot,pRot fInS,& !< fiber axis in sample coordinate system
real(pReal) :: cos2Scatter, angle axis
real(pReal), dimension(5) :: rnd
real(pReal), dimension(3,3) :: &
R_o, & !< rotation to aling fiber axis in crystal and sample system
R_f, & !< random rotation along fiber axis [0, 2*Pi[
R_p !< deviation of axis alingment, bound by 2*FWHM
real(pReal) :: angle
! MD: this is a leftover from using the wrongly scaled Gaussian distribution. fInC = [sin(alpha(1))*cos(alpha(2)), sin(alpha(1))*sin(alpha(2)), cos(alpha(1))]
! I'm relatively sure that it is not correct to scale by any constant factor here fInS = [sin(beta(1))*cos(beta(2)), sin(beta(1))*sin(beta(2)), cos(beta(1))]
cos2Scatter = cos(2.0_pReal*0.95_pReal * FWHM)
! fiber axis in crystal coordinate system R_o = math_EulerAxisAngleToR(math_crossproduct(fInC,fInS),-acos(dot_product(fInC,fInS)))
fiberInC = [ sin(alpha(1))*cos(alpha(2)) , &
sin(alpha(1))*sin(alpha(2)), &
cos(alpha(1))]
! fiber axis in sample coordinate system
fiberInS = [ sin(beta(1))*cos(beta(2)), &
sin(beta(1))*sin(beta(2)), &
cos(beta(1))]
oRot = merge(math_EulerAxisAngleToR(math_crossproduct(fiberInC,fiberInS),angle),
math_I3, acos(dot_product(fiberInC,fiberInS)) > tol_math_check)
GaussConvolution: do
rnd = halton(int([14,5,10,3,9,17],pInt))
! random rotation around fiber axis
fRot = math_EulerAxisAngleToR(fiberInS,rnd(1)*2.0_pReal*PI)
! random axis pependicular to fiber axis
axis(1:2) = rnd(2:3)
if (abs(fiberInS(3)) > tol_math_check) then
axis(3)=-(axis(1)*fiberInS(1)+axis(2)*fiberInS(2))
else if(abs(fiberInS(2)) > tol_math_check) then
axis(3)=axis(2)
axis(2)=-(axis(1)*fiberInS(1)+axis(3)*fiberInS(3))
else if(abs(fiberInS(1)) > tol_math_check) then
axis(3)=axis(1)
axis(1)=-(axis(2)*fiberInS(2)+axis(3)*fiberInS(3))
end if
axis = axis/norm2(axis)
! rotate by XXX amount around axis perpendicular to fiber axis
! Proabably https://math.stackexchange.com/questions/56784 is the right approach
if (FWHM > 0.0_pReal) then if (FWHM > 0.0_pReal) then
angle = acos(cos2Scatter+(1.0_pReal-cos2Scatter)*rnd(4)) GaussConvolution: do
if (rnd(5) <= exp(-4.0_pReal*log(2.0_pReal)*(angle/FWHM)**2.0_pReal)) exit rnd = halton(int([5,10,3,9,17],pInt))
else rnd(1:2) = [cos(FWHM*2.0_pReal),-1.0_pReal] + rnd(1:2)*[1.0_pReal - cos(FWHM*2.0_pReal),2.0_pReal]
angle = 0.0_pReal axis = [sqrt(1.0_pReal - rnd(2)**2.0_pReal)*sin(rnd(1)),&
exit sqrt(1.0_pReal - rnd(2)**2.0_pReal)*cos(rnd(1)),rnd(2)]
end if angle = acos(dot_product([0.0_pReal,0.0_pReal,1.0_pReal],axis))
if (rnd(3) <= exp(-4.0_pReal*log(2.0_pReal)*(angle/FWHM)**2.0_pReal)) exit
enddo GaussConvolution enddo GaussConvolution
if (rnd(6) <= 0.5) angle = -angle if (rnd(4) <= 0.5) angle = -angle
R_p = math_EulerAxisAngleToR(math_crossproduct(axis,[0.0_pReal,0.0_pReal,1.0_pReal]),angle)
else
R_p = math_I3
rnd = halton(int([5,10,3,9,17],pInt))
endif
pRot = math_EulerAxisAngleToR(axis,angle) R_f = math_EulerAxisAngleToR(fInS,rnd(5)*2.0_pReal*PI)
! ---# apply the three rotations #--- math_sampleFiberOri = math_RtoEuler(math_mul33x33(R_p,math_mul33x33(R_f,R_o)))
math_sampleFiberOri = math_RtoEuler(math_mul33x33(pRot,math_mul33x33(fRot,oRot)))
end function math_sampleFiberOri end function math_sampleFiberOri
@ -2279,19 +2264,23 @@ end function math_invariantsSym33
!------------------------------------------------------------------------------------------------- !-------------------------------------------------------------------------------------------------
!> @brief computes an element of a Halton sequence. !> @brief computes an element of a Halton sequence.
!> @details Only the absolute value of SEED is considered. SEED = 0 is allowed, and returns R = 0. !> @author John Burkardt
!> @details Halton Bases should be distinct prime numbers. This routine only checks that each base !> @author Martin Diehl
!> @details is greater than 1. !> @details Incrementally increasing elements of the Halton sequence for given bases (> 0)
!> @details Reference: !> @details Reference:
!> @details J.H. Halton: On the efficiency of certain quasi-random sequences of points in evaluating !> @details J.H. Halton: On the efficiency of certain quasi-random sequences of points in evaluating
!> @details multi-dimensional integrals, Numerische Mathematik, Volume 2, pages 84-90, 1960. !> @details multi-dimensional integrals, Numerische Mathematik, Volume 2, pages 84-90, 1960.
!> @author John Burkardt !> @details Reference for prime numbers:
!> @details Milton Abramowitz and Irene Stegun: Handbook of Mathematical Functions,
!> @details US Department of Commerce, 1964, pages 870-873.
!> @details Daniel Zwillinger: CRC Standard Mathematical Tables and Formulae,
!> @details 30th Edition, CRC Press, 1996, pages 95-98.
!------------------------------------------------------------------------------------------------- !-------------------------------------------------------------------------------------------------
function halton(bases) function halton(bases)
implicit none implicit none
integer(pInt), intent(in), dimension(:):: & integer(pInt), intent(in), dimension(:):: &
bases !< dimension of the sequence bases !< bases (prime number ID)
real(pReal), dimension(size(bases)) :: & real(pReal), dimension(size(bases)) :: &
halton halton
integer(pInt), save :: & integer(pInt), save :: &
@ -2301,8 +2290,6 @@ function halton(bases)
integer(pInt), dimension(size(bases)) :: & integer(pInt), dimension(size(bases)) :: &
base, & base, &
t t
integer(pInt) :: &
i
integer(pInt), dimension(0:1600), parameter :: & integer(pInt), dimension(0:1600), parameter :: &
prime = int([& prime = int([&
1, & 1, &
@ -2496,17 +2483,6 @@ function halton(bases)
t = t / base t = t / base
enddo enddo
!--------------------------------------------------------------------------------------------------
!> @brief returns any of the first 1600 prime numbers.
!> @details n = 0 is legal, returning PRIME = 1.
!> @details 0 > n > 1600 returns -1
!> @details Reference:
!> @details Milton Abramowitz and Irene Stegun: Handbook of Mathematical Functions,
!> @details US Department of Commerce, 1964, pages 870-873.
!> @details Daniel Zwillinger: CRC Standard Mathematical Tables and Formulae,
!> @details 30th Edition, CRC Press, 1996, pages 95-98.
!> @author John Burkardt
!--------------------------------------------------------------------------------------------------
end function halton end function halton