new formular for kappa is done, time for debugging

This commit is contained in:
zhangc43 2016-04-13 16:38:22 -04:00
parent de6b712b09
commit 00abdc34c1
3 changed files with 255 additions and 150 deletions

View File

@ -436,7 +436,7 @@ end function constitutive_homogenizedC
!--------------------------------------------------------------------------------------------------
!> @brief calls microstructure function of the different constitutive models
!--------------------------------------------------------------------------------------------------
subroutine constitutive_microstructure(orientations, Fe, Fp, ipc, ip, el, F0s,Fes,Fps)
subroutine constitutive_microstructure(orientations, Fe, Fp, ipc, ip, el, F0s,Fes,Fps,Tstar_vs)
use prec, only: &
pReal
use material, only: &
@ -473,10 +473,15 @@ subroutine constitutive_microstructure(orientations, Fe, Fp, ipc, ip, el, F0s,Fe
ho, & !< homogenization
tme !< thermal member position
real(pReal), intent(in), dimension(:,:,:,:) :: &
orientations, &
orientations
real(pReal), intent(in), dimension(:,:,:,:,:) :: &
F0s, &
Fes, &
Fps !< crystal orientations as quaternions
Fps
real(pReal), intent(in), dimension(6,:,:,:) :: &
Tstar_vs !< crystal orientations as quaternions
ho = material_homog(ip,el)
tme = thermalMapping(ho)%p(ip,el)
@ -491,7 +496,7 @@ subroutine constitutive_microstructure(orientations, Fe, Fp, ipc, ip, el, F0s,Fe
case (PLASTICITY_NONLOCAL_ID) plasticityType
call plastic_nonlocal_microstructure (Fe,Fp,ip,el)
case (PLASTICITY_PHENOPLUS_ID) plasticityType
call plastic_phenoplus_microstructure(orientations,ipc,ip,el,F0s,Fes,Fps)
call plastic_phenoplus_microstructure(orientations,ipc,ip,el,F0s,Fes,Fps,Tstar_vs)
end select plasticityType
end subroutine constitutive_microstructure

View File

@ -440,7 +440,8 @@ subroutine crystallite_init
c,i,e,
crystallite_F0,
crystallite_Fe,
crystallite_Fp) ! update dependent state variables to be consistent with basic states
crystallite_Fp,
crystallite_Tstar_v) ! update dependent state variables to be consistent with basic states
enddo
enddo
enddo
@ -1720,7 +1721,8 @@ subroutine crystallite_integrateStateRK4()
g, i, e,
crystallite_F0,
crystallite_Fe,
crystallite_Fp) ! update dependent state variables to be consistent with basic states
crystallite_Fp,
crystallite_Tstar_v) ! update dependent state variables to be consistent with basic states
enddo; enddo; enddo
!$OMP ENDDO
@ -2049,7 +2051,8 @@ subroutine crystallite_integrateStateRKCK45()
g, i, e,
crystallite_F0,
crystallite_Fe,
crystallite_Fp) ! update dependent state variables to be consistent with basic states
crystallite_Fp,
crystallite_Tstar_v) ! update dependent state variables to be consistent with basic states
enddo; enddo; enddo
!$OMP ENDDO
@ -2272,7 +2275,8 @@ subroutine crystallite_integrateStateRKCK45()
g, i, e,
crystallite_F0,
crystallite_Fe,
crystallite_Fp) ! update dependent state variables to be consistent with basic states
crystallite_Fp,
crystallite_Tstar_v) ! update dependent state variables to be consistent with basic states
enddo; enddo; enddo
!$OMP ENDDO
@ -2510,7 +2514,8 @@ subroutine crystallite_integrateStateAdaptiveEuler()
g, i, e,
crystallite_F0,
crystallite_Fe,
crystallite_Fp) ! update dependent state variables to be consistent with basic states
crystallite_Fp,
crystallite_Tstar_v) ! update dependent state variables to be consistent with basic states
enddo; enddo; enddo
!$OMP ENDDO
!$OMP END PARALLEL
@ -2857,7 +2862,8 @@ eIter = FEsolving_execElem(1:2)
g, i, e,
crystallite_F0,
crystallite_Fe,
crystallite_Fp) ! update dependent state variables to be consistent with basic states
crystallite_Fp,
crystallite_Tstar_v) ! update dependent state variables to be consistent with basic states
enddo; enddo; enddo
!$OMP ENDDO
!$OMP END PARALLEL
@ -3105,7 +3111,8 @@ subroutine crystallite_integrateStateFPI()
g, i, e,
crystallite_F0,
crystallite_Fe,
crystallite_Fp) ! update dependent state variables to be consistent with basic states
crystallite_Fp,
crystallite_Tstar_v) ! update dependent state variables to be consistent with basic states
p = phaseAt(g,i,e)
c = phasememberAt(g,i,e)
plasticState(p)%previousDotState2(:,c) = plasticState(p)%previousDotState(:,c)

View File

@ -739,7 +739,7 @@ end subroutine plastic_phenoplus_aTolState
!--------------------------------------------------------------------------------------------------
!> @brief calculate push-up factors (kappa) for each voxel based on its neighbors
!--------------------------------------------------------------------------------------------------
subroutine plastic_phenoplus_microstructure(orientation,ipc,ip,el,F0,Fe,Fp)
subroutine plastic_phenoplus_microstructure(orientation,ipc,ip,el,F0,Fe,Fp,Tstar_v)
use math, only: pi, &
math_identity2nd, &
math_mul33x33, &
@ -765,7 +765,11 @@ subroutine plastic_phenoplus_microstructure(orientation,ipc,ip,el,F0,Fe,Fp)
homogenization_maxNgrains, &
plasticState
use lattice, only: lattice_sn, &
use lattice, only: lattice_Sslip_v, &
lattice_maxNslipFamily, &
lattice_NslipSystem, &
lattice_NslipSystem, &
lattice_sn, &
lattice_sd, &
lattice_qDisorientation
@ -776,11 +780,13 @@ subroutine plastic_phenoplus_microstructure(orientation,ipc,ip,el,F0,Fe,Fp)
ip, & !< integration point
el
real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
F0, & ! deformation gradient from last increment
Fe, & ! elastic deformation gradient
Fp ! elastic deformation gradient !< element
F0, & !< deformation gradient from last increment
Fe, & !< elastic deformation gradient
Fp !< elastic deformation gradient !< element
real(pReal), dimension(4,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
orientation ! crystal orientation in quaternions
orientation !< crystal orientation in quaternions
real(pReal), dimension(6,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
Tstar_v !< for calculation of gdot
!***local variables
integer(pInt) instance, & !my instance of this plasticity
@ -790,20 +796,23 @@ subroutine plastic_phenoplus_microstructure(orientation,ipc,ip,el,F0,Fe,Fp)
Nneighbors, & !number of neighbors (<= 6)
vld_Nneighbors, & !number of my valid neighbors
n, & !neighbor index (for iterating through all neighbors)
n_calcTaylor, & !
n_phasecheck, & !
ns, & !number of slip system
nt, & !number of twin system
me_slip, & !my slip system index
neighbor_el, & !element number of neighboring material point
neighbor_ip, & !integration point of neighboring material point
neighbor_n, & !I have no idea what is this
neighbor_ipc, & !I have no idea what is this
neighbor_of, & !spatial position in memory for this neighbor (offset)
neighbor_ph, & !neighbor's phase
neighbor_instance, & !neighbor's instance of this plasticity
neighbor_tex, & !neighbor's texture ID
ne_slip_ac, & !loop to find neighbor shear
ne_slip, & !slip system index for neighbor
index_kappa, & !index of pushup factors in plasticState
offset_acshear_slip, & !offset in PlasticState for the accumulative shear
j !quickly loop through slip families
j, & !quickly loop through slip families
f,i,& !loop counter for me
f_ne, i_ne !loop counter for neighbor
real(pReal) kappa_max, & !
tmp_myshear_slip, & !temp storage for accumulative shear for me
@ -812,8 +821,7 @@ subroutine plastic_phenoplus_microstructure(orientation,ipc,ip,el,F0,Fe,Fp)
avg_acshear_ne, & !the average accumulative shear from my neighbor
taylor_me, & !Taylor factor for me
taylor_ne, & !Taylor factor for my current neighbor
tmp_mprime, & !temp holder for m' value
tmp_acshear !temp holder for accumulative shear for m'
d_vonstrain !von Mises delta strain (temp container)
real(pReal), dimension(3,3) :: &
F0_me, & !my deformation gradient from last converged increment
@ -827,20 +835,20 @@ subroutine plastic_phenoplus_microstructure(orientation,ipc,ip,el,F0,Fe,Fp)
dE_ne !delta Green Lagrangian strain tensor
real(pReal), dimension(plastic_phenoplus_totalNslip(phase_plasticityInstance(material_phase(1,ip,el)))) :: &
m_primes, & !m' between me_alpha(one) and neighbor beta(all)
me_acshear, & !temp storage for ac_shear of one particular system for me
ne_acshear !temp storage for ac_shear of one particular system for one of my neighbor
m_primes !m' between me_alpha(one) and neighbor beta(all)
real(pReal), dimension(3,plastic_phenoplus_totalNslip(phase_plasticityInstance(material_phase(1,ip,el)))) :: &
slipNormal, &
slipDirect
real(pReal), dimension(4) :: my_orientation, & !store my orientation
real(pReal), dimension(4) :: &
my_orientation, & !store my orientation
neighbor_orientation, & !store my neighbor orientation
absMisorientation
real(pReal), dimension(FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,el))))) :: &
ne_mprimes !m' between each neighbor
ne_mprimes, & !m' between each neighbor
d_taylors !store (taylor_ne-taylor_me) for each neighbor
!***Get my properties
Nneighbors = FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,el))))
@ -850,7 +858,6 @@ subroutine plastic_phenoplus_microstructure(orientation,ipc,ip,el,F0,Fe,Fp)
instance = phase_plasticityInstance(ph) !get my instance based on phase ID
ns = plastic_phenoplus_totalNslip(instance)
nt = plastic_phenoplus_totalNtwin(instance)
offset_acshear_slip = ns + nt + 2_pInt
index_kappa = ns + nt + 2_pInt + ns + nt !location of kappa in plasticState
!***init calculation for given voxel
@ -864,37 +871,123 @@ subroutine plastic_phenoplus_microstructure(orientation,ipc,ip,el,F0,Fe,Fp)
Fp_me = Fp(1:3, 1:3, ipc, ip, el)
slipNormal(1:3, 1:ns) = lattice_sn(1:3, 1:ns, ph)
slipDirect(1:3, 1:ns) = lattice_sd(1:3, 1:ns, ph)
!******calculate Taylor factor for me
!@note: we need teh
F_me = math_mul33x33(Fe_me,Fp_me)
E_me = 0.5*(math_mul33x33(math_transpose33(F_me), F_me) - math_identity2nd) !E = 0.5(F^tF-I)
vonStrain
!***loop into the geometry to figure out who is my closest neighbor
LOOPNEIGHBORS: DO n=1_pInt, Nneighbors
!******for each of my neighbor, calculate the Taylor factor
ne_taylor = 1.0
!*********for the high contrast interface
IF (abs(taylor_ne - taylor_me) > dtaylor_cut) THEN
!********* gather neighbor orientation and slip systems
!********* calculate m' (need to loop through all my slip systems as well)
!********* if m'>mprime_cut kappa=1.5 else 1.0
!******
ELSE
!***check if all my neighbors have the same phase as me
vld_Nneighbors = 0
PHASECHECK DO n_phasecheck = 1_pInt, Nneighbors
!******for each of my neighbor
neighbor_el = mesh_ipNeighborhood( 1, n_phasecheck, ip, el )
neighbor_ip = mesh_ipNeighborhood( 2, n_phasecheck, ip, el )
neighbor_ipc = 1
neighbor_of = phasememberAt( neighbor_ipc, neighbor_ip, neighbor_el )
neighbor_ph = phaseAt( neighbor_ipc, neighbor_ip, neighbor_el )
IF (neighbor_ph == ph) THEN
vld_Nneighbors = vld_Nneighbors + 1_pInt
ENDIF
!***end of search
ENDDO LOOPNEIGHBORS
ENDDO PHASECHECK
! !***gather my accumulative shear from palsticState
! FINDMYSHEAR: do j = 1_pInt,ns
! me_acshear(j) = plasticState(ph)%state(offset_acshear_slip+j, of)
! enddo FINDMYSHEAR
!***initialize kappa with 1.0 (assume no push-up)
plasticState(ph)%state(index_kappa+1_pInt:index_kappa+ns, of) = 1.0_pReal
!***only calculate kappa for those inside the main phase
IF (vld_Nneighbors == Nneighbors) THEN
!******calculate Taylor factor for me
dF_me = math_mul33x33(Fe_me,Fp_me) - F0_me
dE_me = 0.5*(math_mul33x33(math_transpose33(dF_me), dF_me) - math_identity2nd(3)) !dE = 0.5(dF^tdF-I)
d_vonstrain = SQRT(2.0_pReal/3.0_pReal * math_mul33xx33(dE_me, dE_me))
sum_gdot = 0.0_pReal
!go through my slip system to find the sum of gamma_dot
j = 0_pInt
slipFamilies: DO f = 1_pInt,lattice_maxNslipFamily
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) !at which index starts my family
slipSystems: DO i = 1_pInt,plastic_phenoplus_Nslip(f,instance)
j = j+1_pInt
tau_slip = dot_product(Tstar_v(1:6, ipc, ip, el),lattice_Sslip_v(1:6,1,index_myFamily+i,ph))
sum_gdot = sum_gdot + &
plastic_phenoplus_gdot0_slip(instance)* &
((abs(tau_slip)/(state(instance)%s_slip(j,of))) &
**plastic_phenoplus_n_slip(instance))*sign(1.0_pReal,tau_slip)
ENDDO slipSystems
ENDDO slipFamilies
taylor_me = d_vonstrain/sum_gdot
!***calculate delta_M (Taylor factor) between each neighbor and me
LOOPCALCTAYLOR: DO n_calcTaylor=1_pInt, Nneighbors
!******for each of my neighbor
neighbor_el = mesh_ipNeighborhood( 1, n_calcTaylor, ip, el )
neighbor_ip = mesh_ipNeighborhood( 2, n_calcTaylor, ip, el )
neighbor_ipc = 1 !It is ipc
neighbor_of = phasememberAt( neighbor_ipc, neighbor_ip, neighbor_el )
neighbor_ph = phaseAt( neighbor_ipc, neighbor_ip, neighbor_el )
neighbor_instance = phase_plasticityInstance( neighbor_ph )
neighbor_tex = material_texture( 1,neighbor_ip, neighbor_el )
neighbor_orientation = orientation( 1:4, neighbor_ipc, neighbor_ip, neighbor_el ) !ipc is always 1.
Fe_ne = Fe( 1:3, 1:3, neighbor_ipc, neighbor_ip, neighbor_el )
Fp_ne = Fp( 1:3, 1:3, neighbor_ipc, neighbor_ip, neighbor_el )
F0_ne = F0( 1:3, 1:3, neighbor_ipc, neighbor_ip, neighbor_el )
!******calculate the Taylor factor
dF_ne = math_mul33x33(Fe_ne, Fp_ne) - F0_ne
dE_ne = 0.5*(math_mul33x33(math_transpose33(dF_ne), dF_ne) - math_identity2nd(3)) !dE = 0.5(dF^tdF-I)
d_vonstrain = SQRT(2.0_pReal/3.0_pReal * math_mul33xx33(dE_ne, dE_ne))
sum_gdot = 0.0_pReal
!go through my neighbor slip system to calculate sum_gdot
j = 0_pInt
slipFamiliesNeighbor: DO f_ne = 1_pInt,lattice_maxNslipFamily
index_myFamily = sum(lattice_NslipSystem(1:f_ne-1_pInt,neighbor_ph)) ! at which index starts my family
slipSystemsNeighbor: DO i_ne = 1_pInt,plastic_phenopowerlaw_Nslip(f_ne,neighbor_instance)
j = j+1_pInt
tau_slip = dot_product(Tstar_v(1:6, neighbor_ipc, neighbor_ip, neighbor_el),
lattice_Sslip_v(1:6,1,index_myFamily+i_ne,neighbor_ph))
sum_gdot = sum_gdot &
+plastic_phenopowerlaw_gdot0_slip(neighbor_instance) &
*((abs(tau_slip)/(state(neighbor_instance)%s_slip(j,neighbor_of))) &
**plastic_phenopowerlaw_n_slip(neighbor_instance))*sign(1.0_pReal,tau_slip)
ENDDO slipSystemsNeighbor
ENDDO slipFamiliesNeighbor
taylor_ne = d_vonstrain / sum_gdot
!******calculate Taylor difference
d_taylors(n_calcTaylor) = taylor_ne - taylor_me
ENDDO LOOPCALCTAYLOR
!***Only perform necessary calculation if high contrast interface is detected
IF (max(d_taylors) > dtaylor_cut) THEN
!*****calculate kappa per slip system base
LOOPMYSLIP DO me_slip = 1_pInt, ns
ne_mprimes = 0.0_pReal !initialize max m' to 0 for all neighbors
LOOPMYNEIGHBORS DO n=1_pInt, Nneighbors
!*******only consider neighbor at the high contrast interface
IF (d_taylors(n) > dtaylor_cut) THEN
neighbor_el = mesh_ipNeighborhood( 1, n_calcTaylor, ip, el )
neighbor_ip = mesh_ipNeighborhood( 2, n_calcTaylor, ip, el )
neighbor_ipc = 1 !It is ipc
neighbor_of = phasememberAt( neighbor_ipc, neighbor_ip, neighbor_el )
neighbor_ph = phaseAt( neighbor_ipc, neighbor_ip, neighbor_el )
neighbor_instance = phase_plasticityInstance( neighbor_ph )
neighbor_tex = material_texture( 1,neighbor_ip, neighbor_el )
neighbor_orientation = orientation( 1:4, neighbor_ipc, neighbor_ip, neighbor_el ) !ipc is always 1.
absMisorientation = lattice_qDisorientation( my_orientation, &
neighbor_orientation, &
0_pInt ) !no need for explicit calculation of symmetry
!*********go through neighbor slip system to calculate m'
LOOPNEIGHBORSLIP: DO ne_slip=1_pInt,ns
m_primes(ne_slip) = abs(math_mul3x3(slipNormal(1:3,me_slip), &
math_qRot(absMisorientation, slipNormal(1:3,ne_slip)))) &
*abs(math_mul3x3(slipDirect(1:3,me_slip), &
math_qRot(absMisorientation, slipDirect(1:3,ne_slip))))
ENDDO LOOPNEIGHBORSLIP
ne_mprimes(n) = max(m_primes)
ENDIF
!*******check if one of the neighbor already can provide a kick for this slip system
IF ( max(ne_mprimes) > mprime_cut ) THEN
plasticState(ph)%state(index_kappa+me_slip, of) = 1.5_pReal
EXIT
ENDIF
ENDDO LOOPMYNEIGHBORS
ENDDO LOOPMYSLIP
ENDIF
ENDIF
! !***gather my orientation and slip systems
! my_orientation = orientation(1:4, ipc, ip, el)
! slipNormal(1:3, 1:ns) = lattice_sn(1:3, 1:ns, ph)
! slipDirect(1:3, 1:ns) = lattice_sd(1:3, 1:ns, ph)
! kappa_max = plastic_phenoplus_kappa_max(instance) !maximum pushups allowed (READIN)
! !***calculate kappa between me and all my neighbors
! LOOPMYSLIP: DO me_slip=1_pInt,ns