DAMASK_EICMD/code/homogenization.f90

791 lines
40 KiB
Fortran
Raw Normal View History

! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH
!
! This file is part of DAMASK,
! the Düsseldorf Advanced MAterial Simulation Kit.
!
! DAMASK is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! DAMASK is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
!
!##############################################################
!* $Id$
!***************************************
!* Module: HOMOGENIZATION *
!***************************************
!* contains: *
!* - _init *
!* - materialpoint_stressAndItsTangent *
!* - _partitionDeformation *
!* - _updateState *
!* - _averageStressAndItsTangent *
!* - _postResults *
!***************************************
MODULE homogenization
!*** Include other modules ***
use prec, only: pInt,pReal,p_vec
implicit none
! ****************************************************************
! *** General variables for the homogenization at a ***
! *** material point ***
! ****************************************************************
type(p_vec), dimension(:,:), allocatable :: homogenization_state0, & ! pointer array to homogenization state at start of FE increment
homogenization_subState0, & ! pointer array to homogenization state at start of homogenization increment
homogenization_state ! pointer array to current homogenization state (end of converged time step)
integer(pInt), dimension(:,:), allocatable :: homogenization_sizeState, & ! size of state array per grain
homogenization_sizePostResults ! size of postResults array per material point
real(pReal), dimension(:,:,:,:,:,:), allocatable :: materialpoint_dPdF ! tangent of first P--K stress at IP
real(pReal), dimension(:,:,:,:), allocatable :: materialpoint_F0, & ! def grad of IP at start of FE increment
materialpoint_F, & ! def grad of IP to be reached at end of FE increment
materialpoint_subF0, & ! def grad of IP at beginning of homogenization increment
materialpoint_subF, & ! def grad of IP to be reached at end of homog inc
materialpoint_P ! first P--K stress of IP
real(pReal), dimension(:,:), allocatable :: materialpoint_Temperature, & ! temperature at IP
materialpoint_subFrac, &
materialpoint_subStep, &
materialpoint_subdt
real(pReal), dimension(:,:,:), allocatable :: materialpoint_results ! results array of material point
logical, dimension(:,:), allocatable :: materialpoint_requested, &
materialpoint_converged
logical, dimension(:,:,:), allocatable :: materialpoint_doneAndHappy
integer(pInt) homogenization_maxSizeState, &
homogenization_maxSizePostResults, &
materialpoint_sizeResults
CONTAINS
!**************************************
!* Module initialization *
!**************************************
subroutine homogenization_init(Temperature)
use prec, only: pReal,pInt
use math, only: math_I3
use debug, only: debug_verbosity
use IO, only: IO_error, IO_open_file, IO_open_jobFile, IO_write_jobFile
use mesh, only: mesh_maxNips,mesh_NcpElems,mesh_element,FE_Nips
use material
use constitutive, only: constitutive_maxSizePostResults
use crystallite, only: crystallite_maxSizePostResults
use homogenization_isostrain
use homogenization_RGC
implicit none
real(pReal) Temperature
integer(pInt), parameter :: fileunit = 200
2011-04-13 19:46:22 +05:30
integer(pInt) e,i,p,myInstance
integer(pInt), dimension(:,:), pointer :: thisSize
character(len=64), dimension(:,:), pointer :: thisOutput
logical knownHomogenization
! --- PARSE HOMOGENIZATIONS FROM CONFIG FILE ---
if (.not. IO_open_jobFile(fileunit,material_localFileExt)) then ! no local material configuration present...
if (.not. IO_open_file(fileunit,material_configFile)) call IO_error(100) ! ...and cannot open material.config file
endif
call homogenization_isostrain_init(fileunit)
call homogenization_RGC_init(fileunit)
close(fileunit)
! --- WRITE DESCRIPTION FILE FOR HOMOGENIZATION OUTPUT ---
if(.not. IO_write_jobFile(fileunit,'outputHomogenization')) then ! problems in writing file
call IO_error (50)
endif
do p = 1,material_Nhomogenization
i = homogenization_typeInstance(p) ! which instance of this homogenization type
knownHomogenization = .true. ! assume valid
select case(homogenization_type(p)) ! split per homogenization type
case (homogenization_isostrain_label)
thisOutput => homogenization_isostrain_output
thisSize => homogenization_isostrain_sizePostResult
case (homogenization_RGC_label)
thisOutput => homogenization_RGC_output
thisSize => homogenization_RGC_sizePostResult
case default
knownHomogenization = .false.
end select
write(fileunit,*)
write(fileunit,'(a)') '['//trim(homogenization_name(p))//']'
write(fileunit,*)
if (knownHomogenization) then
write(fileunit,'(a)') '(type)'//char(9)//trim(homogenization_type(p))
write(fileunit,'(a,i4)') '(ngrains)'//char(9),homogenization_Ngrains(p)
do e = 1,homogenization_Noutput(p)
write(fileunit,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
enddo
endif
enddo
close(fileunit)
! --- ALLOCATE AND INITIALIZE GLOBAL VARIABLES ---
allocate(homogenization_state0(mesh_maxNips,mesh_NcpElems))
allocate(homogenization_subState0(mesh_maxNips,mesh_NcpElems))
allocate(homogenization_state(mesh_maxNips,mesh_NcpElems))
allocate(homogenization_sizeState(mesh_maxNips,mesh_NcpElems)); homogenization_sizeState = 0_pInt
allocate(homogenization_sizePostResults(mesh_maxNips,mesh_NcpElems)); homogenization_sizePostResults = 0_pInt
allocate(materialpoint_dPdF(3,3,3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_dPdF = 0.0_pReal
allocate(materialpoint_F0(3,3,mesh_maxNips,mesh_NcpElems));
allocate(materialpoint_F(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_F = 0.0_pReal
allocate(materialpoint_subF0(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_subF0 = 0.0_pReal
allocate(materialpoint_subF(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_subF = 0.0_pReal
allocate(materialpoint_P(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_P = 0.0_pReal
allocate(materialpoint_Temperature(mesh_maxNips,mesh_NcpElems)); materialpoint_Temperature = Temperature
allocate(materialpoint_subFrac(mesh_maxNips,mesh_NcpElems)); materialpoint_subFrac = 0.0_pReal
allocate(materialpoint_subStep(mesh_maxNips,mesh_NcpElems)); materialpoint_subStep = 0.0_pReal
allocate(materialpoint_subdt(mesh_maxNips,mesh_NcpElems)); materialpoint_subdt = 0.0_pReal
allocate(materialpoint_requested(mesh_maxNips,mesh_NcpElems)); materialpoint_requested = .false.
allocate(materialpoint_converged(mesh_maxNips,mesh_NcpElems)); materialpoint_converged = .true.
allocate(materialpoint_doneAndHappy(2,mesh_maxNips,mesh_NcpElems)); materialpoint_doneAndHappy = .true.
forall (i = 1:mesh_maxNips,e = 1:mesh_NcpElems)
materialpoint_F0(1:3,1:3,i,e) = math_I3
materialpoint_F(1:3,1:3,i,e) = math_I3
end forall
! --- ALLOCATE AND INITIALIZE GLOBAL STATE AND POSTRESULTS VARIABLES ---
!$OMP PARALLEL DO PRIVATE(myInstance)
do e = 1,mesh_NcpElems ! loop over elements
myInstance = homogenization_typeInstance(mesh_element(3,e))
do i = 1,FE_Nips(mesh_element(2,e)) ! loop over IPs
select case(homogenization_type(mesh_element(3,e)))
case (homogenization_isostrain_label)
if (homogenization_isostrain_sizeState(myInstance) > 0_pInt) then
allocate(homogenization_state0(i,e)%p(homogenization_isostrain_sizeState(myInstance)))
allocate(homogenization_subState0(i,e)%p(homogenization_isostrain_sizeState(myInstance)))
allocate(homogenization_state(i,e)%p(homogenization_isostrain_sizeState(myInstance)))
homogenization_state0(i,e)%p = homogenization_isostrain_stateInit(myInstance)
homogenization_sizeState(i,e) = homogenization_isostrain_sizeState(myInstance)
endif
homogenization_sizePostResults(i,e) = homogenization_isostrain_sizePostResults(myInstance)
case (homogenization_RGC_label)
if (homogenization_RGC_sizeState(myInstance) > 0_pInt) then
allocate(homogenization_state0(i,e)%p(homogenization_RGC_sizeState(myInstance)))
allocate(homogenization_subState0(i,e)%p(homogenization_RGC_sizeState(myInstance)))
allocate(homogenization_state(i,e)%p(homogenization_RGC_sizeState(myInstance)))
homogenization_state0(i,e)%p = homogenization_RGC_stateInit(myInstance)
homogenization_sizeState(i,e) = homogenization_RGC_sizeState(myInstance)
endif
homogenization_sizePostResults(i,e) = homogenization_RGC_sizePostResults(myInstance)
case default
call IO_error(201,ext_msg=homogenization_type(mesh_element(3,e))) ! unknown type 201 is homogenization!
end select
enddo
enddo
!$OMP END PARALLEL DO
homogenization_maxSizeState = maxval(homogenization_sizeState)
homogenization_maxSizePostResults = maxval(homogenization_sizePostResults)
materialpoint_sizeResults = 1 & ! grain count
+ 1 + homogenization_maxSizePostResults & ! homogSize & homogResult
+ homogenization_maxNgrains * (1 + crystallite_maxSizePostResults & ! crystallite size & crystallite results
+ 1 + constitutive_maxSizePostResults) ! constitutive size & constitutive results
allocate(materialpoint_results(materialpoint_sizeResults,mesh_maxNips,mesh_NcpElems))
!$OMP CRITICAL (write2out)
write(6,*)
write(6,*) '<<<+- homogenization init -+>>>'
write(6,*) '$Id$'
write(6,*)
if (debug_verbosity > 0) then
write(6,'(a32,x,7(i8,x))') 'homogenization_state0: ', shape(homogenization_state0)
write(6,'(a32,x,7(i8,x))') 'homogenization_subState0: ', shape(homogenization_subState0)
write(6,'(a32,x,7(i8,x))') 'homogenization_state: ', shape(homogenization_state)
write(6,'(a32,x,7(i8,x))') 'homogenization_sizeState: ', shape(homogenization_sizeState)
write(6,'(a32,x,7(i8,x))') 'homogenization_sizePostResults: ', shape(homogenization_sizePostResults)
write(6,*)
write(6,'(a32,x,7(i8,x))') 'materialpoint_dPdF: ', shape(materialpoint_dPdF)
write(6,'(a32,x,7(i8,x))') 'materialpoint_F0: ', shape(materialpoint_F0)
write(6,'(a32,x,7(i8,x))') 'materialpoint_F: ', shape(materialpoint_F)
write(6,'(a32,x,7(i8,x))') 'materialpoint_subF0: ', shape(materialpoint_subF0)
write(6,'(a32,x,7(i8,x))') 'materialpoint_subF: ', shape(materialpoint_subF)
write(6,'(a32,x,7(i8,x))') 'materialpoint_P: ', shape(materialpoint_P)
write(6,'(a32,x,7(i8,x))') 'materialpoint_Temperature: ', shape(materialpoint_Temperature)
write(6,'(a32,x,7(i8,x))') 'materialpoint_subFrac: ', shape(materialpoint_subFrac)
write(6,'(a32,x,7(i8,x))') 'materialpoint_subStep: ', shape(materialpoint_subStep)
write(6,'(a32,x,7(i8,x))') 'materialpoint_subdt: ', shape(materialpoint_subdt)
write(6,'(a32,x,7(i8,x))') 'materialpoint_requested: ', shape(materialpoint_requested)
write(6,'(a32,x,7(i8,x))') 'materialpoint_converged: ', shape(materialpoint_converged)
write(6,'(a32,x,7(i8,x))') 'materialpoint_doneAndHappy: ', shape(materialpoint_doneAndHappy)
write(6,*)
write(6,'(a32,x,7(i8,x))') 'materialpoint_results: ', shape(materialpoint_results)
write(6,*)
write(6,'(a32,x,7(i8,x))') 'maxSizeState: ', homogenization_maxSizeState
write(6,'(a32,x,7(i8,x))') 'maxSizePostResults: ', homogenization_maxSizePostResults
endif
call flush(6)
!$OMP END CRITICAL (write2out)
endsubroutine
!********************************************************************
!* parallelized calculation of
!* stress and corresponding tangent
!* at material points
!********************************************************************
subroutine materialpoint_stressAndItsTangent(&
updateJaco,& ! flag to initiate Jacobian updating
dt & ! time increment
)
use prec, only: pInt, &
pReal
use numerics, only: subStepMinHomog, &
subStepSizeHomog, &
stepIncreaseHomog, &
nHomog, &
nMPstate
use math, only: math_det3x3, &
math_transpose3x3
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP, &
terminallyIll
use mesh, only: mesh_element, &
mesh_NcpElems, &
mesh_maxNips
use material, only: homogenization_Ngrains
use constitutive, only: constitutive_state0, &
constitutive_partionedState0, &
constitutive_state
use crystallite, only: crystallite_Temperature, &
crystallite_F0, &
crystallite_Fp0, &
crystallite_Fp, &
crystallite_Lp0, &
crystallite_Lp, &
crystallite_dPdF, &
crystallite_dPdF0, &
crystallite_Tstar0_v, &
crystallite_Tstar_v, &
crystallite_partionedTemperature0, &
crystallite_partionedF0, &
crystallite_partionedF, &
crystallite_partionedFp0, &
crystallite_partionedLp0, &
crystallite_partioneddPdF0, &
crystallite_partionedTstar0_v, &
crystallite_dt, &
crystallite_requested, &
crystallite_converged, &
crystallite_stressAndItsTangent, &
crystallite_orientations
use debug, only: debug_verbosity, &
debug_selectiveDebugger, &
debug_e, &
debug_i, &
debug_MaterialpointLoopDistribution, &
debug_MaterialpointStateLoopDistribution
use math, only: math_pDecomposition
implicit none
real(pReal), intent(in) :: dt
logical, intent(in) :: updateJaco
integer(pInt) NiterationHomog,NiterationMPstate
integer(pInt) g,i,e,myNgrains
! ------ initialize to starting condition ------
if (debug_verbosity > 2 .and. debug_e > 0 .and. debug_e <= mesh_NcpElems .and. debug_i > 0 .and. debug_i <= mesh_maxNips) then
!$OMP CRITICAL (write2out)
write (6,*)
write (6,'(a,i5,x,i2)') '<< HOMOG >> Material Point start at el ip ', debug_e, debug_i
write (6,'(a,/,12(x),f14.9)') '<< HOMOG >> Temp0', materialpoint_Temperature(debug_i,debug_e)
write (6,'(a,/,3(12(x),3(f14.9,x)/))') '<< HOMOG >> F0', math_transpose3x3(materialpoint_F0(1:3,1:3,debug_i,debug_e))
write (6,'(a,/,3(12(x),3(f14.9,x)/))') '<< HOMOG >> F', math_transpose3x3(materialpoint_F(1:3,1:3,debug_i,debug_e))
!$OMP END CRITICAL (write2out)
endif
!$OMP PARALLEL DO PRIVATE(myNgrains)
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
! initialize restoration points of grain...
forall (g = 1:myNgrains) constitutive_partionedState0(g,i,e)%p = constitutive_state0(g,i,e)%p ! ...microstructures
crystallite_partionedTemperature0(1:myNgrains,i,e) = materialpoint_Temperature(i,e) ! ...temperatures
crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Fp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic def grads
crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Lp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic velocity grads
crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) = crystallite_dPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) ! ...stiffness
crystallite_partionedF0(1:3,1:3,1:myNgrains,i,e) = crystallite_F0(1:3,1:3,1:myNgrains,i,e) ! ...def grads
crystallite_partionedTstar0_v(1:6,1:myNgrains,i,e) = crystallite_Tstar0_v(1:6,1:myNgrains,i,e) ! ...2nd PK stress
! initialize restoration points of ...
if (homogenization_sizeState(i,e) > 0_pInt) &
homogenization_subState0(i,e)%p = homogenization_state0(i,e)%p ! ...internal homogenization state
materialpoint_subF0(1:3,1:3,i,e) = materialpoint_F0(1:3,1:3,i,e) ! ...def grad
materialpoint_subFrac(i,e) = 0.0_pReal
materialpoint_subStep(i,e) = 1.0_pReal/subStepSizeHomog ! <<added to adopt flexibility in cutback size>>
materialpoint_converged(i,e) = .false. ! pretend failed step of twice the required size
materialpoint_requested(i,e) = .true. ! everybody requires calculation
enddo
enddo
!$OMP END PARALLEL DO
NiterationHomog = 0_pInt
! ------ cutback loop ------
do while (.not. terminallyIll .and. &
any(materialpoint_subStep(:,FEsolving_execELem(1):FEsolving_execElem(2)) > subStepMinHomog)) ! cutback loop for material points
!$OMP PARALLEL DO PRIVATE(myNgrains)
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
if ( materialpoint_converged(i,e) ) then
#ifndef _OPENMP
if (debug_verbosity > 2 .and. ((e == debug_e .and. i == debug_i) .or. .not. debug_selectiveDebugger)) then
write(6,'(a,x,f10.8,x,a,x,f10.8,x,a,/)') '<< HOMOG >> winding forward from', &
materialpoint_subFrac(i,e), 'to current materialpoint_subFrac', &
materialpoint_subFrac(i,e)+materialpoint_subStep(i,e),'in materialpoint_stressAndItsTangent'
endif
#endif
! calculate new subStep and new subFrac
materialpoint_subFrac(i,e) = materialpoint_subFrac(i,e) + materialpoint_subStep(i,e)
!$OMP FLUSH(materialpoint_subFrac)
materialpoint_subStep(i,e) = min(1.0_pReal-materialpoint_subFrac(i,e), &
stepIncreaseHomog*materialpoint_subStep(i,e)) ! <<introduce flexibility for step increase/acceleration>>
!$OMP FLUSH(materialpoint_subStep)
! still stepping needed
if (materialpoint_subStep(i,e) > subStepMinHomog) then
! wind forward grain starting point of...
crystallite_partionedTemperature0(1:myNgrains,i,e) = crystallite_Temperature(1:myNgrains,i,e) ! ...temperatures
crystallite_partionedF0(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedF(1:3,1:3,1:myNgrains,i,e) ! ...def grads
crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Fp(1:3,1:3,1:myNgrains,i,e) ! ...plastic def grads
crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Lp(1:3,1:3,1:myNgrains,i,e) ! ...plastic velocity grads
crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) = crystallite_dPdF(1:3,1:3,1:3,1:3,1:myNgrains,i,e)! ...stiffness
crystallite_partionedTstar0_v(1:6,1:myNgrains,i,e) = crystallite_Tstar_v(1:6,1:myNgrains,i,e) ! ...2nd PK stress
forall (g = 1:myNgrains) constitutive_partionedState0(g,i,e)%p = constitutive_state(g,i,e)%p ! ...microstructures
if (homogenization_sizeState(i,e) > 0_pInt) &
homogenization_subState0(i,e)%p = homogenization_state(i,e)%p ! ...internal state of homog scheme
materialpoint_subF0(1:3,1:3,i,e) = materialpoint_subF(1:3,1:3,i,e) ! ...def grad
!$OMP FLUSH(materialpoint_subF0)
elseif (materialpoint_requested(i,e)) then ! this materialpoint just converged ! already at final time (??)
if (debug_verbosity > 2) then
!$OMP CRITICAL (distributionHomog)
debug_MaterialpointLoopDistribution(min(nHomog+1,NiterationHomog)) = &
debug_MaterialpointLoopDistribution(min(nHomog+1,NiterationHomog)) + 1
!$OMP END CRITICAL (distributionHomog)
endif
endif
! materialpoint didn't converge, so we need a cutback here
else
if ( (myNgrains == 1_pInt .and. materialpoint_subStep(i,e) <= 1.0 ) .or. & ! single grain already tried internal subStepping in crystallite
subStepSizeHomog * materialpoint_subStep(i,e) <= subStepMinHomog ) then ! would require too small subStep
! cutback makes no sense and...
!$OMP CRITICAL (setTerminallyIll)
terminallyIll = .true. ! ...one kills all
!$OMP END CRITICAL (setTerminallyIll)
else ! cutback makes sense
materialpoint_subStep(i,e) = subStepSizeHomog * materialpoint_subStep(i,e) ! crystallite had severe trouble, so do a significant cutback
!$OMP FLUSH(materialpoint_subStep)
#ifndef _OPENMP
if (debug_verbosity > 2 .and. ((e == debug_e .and. i == debug_i) .or. .not. debug_selectiveDebugger)) then
2011-08-02 18:06:08 +05:30
write(6,'(a,x,f10.8,/)') &
'<< HOMOG >> cutback step in materialpoint_stressAndItsTangent with new materialpoint_subStep:',&
materialpoint_subStep(i,e)
endif
#endif
! restore...
crystallite_Temperature(1:myNgrains,i,e) = crystallite_partionedTemperature0(1:myNgrains,i,e) ! ...temperatures
! ...initial def grad unchanged
crystallite_Fp(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic def grads
crystallite_Lp(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic velocity grads
crystallite_dPdF(1:3,1:3,1:3,1:3,1:myNgrains,i,e) = crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) ! ...stiffness
crystallite_Tstar_v(1:6,1:myNgrains,i,e) = crystallite_partionedTstar0_v(1:6,1:myNgrains,i,e) ! ...2nd PK stress
forall (g = 1:myNgrains) constitutive_state(g,i,e)%p = constitutive_partionedState0(g,i,e)%p ! ...microstructures
if (homogenization_sizeState(i,e) > 0_pInt) &
homogenization_state(i,e)%p = homogenization_subState0(i,e)%p ! ...internal state of homog scheme
endif
endif
materialpoint_requested(i,e) = materialpoint_subStep(i,e) > subStepMinHomog
if (materialpoint_requested(i,e)) then
materialpoint_subF(1:3,1:3,i,e) = materialpoint_subF0(1:3,1:3,i,e) + &
materialpoint_subStep(i,e) * (materialpoint_F(1:3,1:3,i,e) - materialpoint_F0(1:3,1:3,i,e))
materialpoint_subdt(i,e) = materialpoint_subStep(i,e) * dt
materialpoint_doneAndHappy(1:2,i,e) = (/.false.,.true./)
endif
enddo ! loop IPs
enddo ! loop elements
!$OMP END PARALLEL DO
! ------ convergence loop material point homogenization ------
NiterationMPstate = 0_pInt
do while (.not. terminallyIll .and. &
any( materialpoint_requested(:,FEsolving_execELem(1):FEsolving_execElem(2)) &
.and. .not. materialpoint_doneAndHappy(1,:,FEsolving_execELem(1):FEsolving_execElem(2)) &
) .and. &
NiterationMPstate < nMPstate) ! convergence loop for materialpoint
NiterationMPstate = NiterationMPstate + 1
! --+>> deformation partitioning <<+--
!
! based on materialpoint_subF0,.._subF,
! crystallite_partionedF0,
! homogenization_state
! results in crystallite_partionedF
!$OMP PARALLEL DO PRIVATE(myNgrains)
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
if ( materialpoint_requested(i,e) .and. & ! process requested but...
.not. materialpoint_doneAndHappy(1,i,e)) then ! ...not yet done material points
call homogenization_partitionDeformation(i,e) ! partition deformation onto constituents
crystallite_dt(1:myNgrains,i,e) = materialpoint_subdt(i,e) ! propagate materialpoint dt to grains
crystallite_requested(1:myNgrains,i,e) = .true. ! request calculation for constituents
else
crystallite_requested(1:myNgrains,i,e) = .false. ! calculation for constituents not required anymore
endif
enddo
enddo
!$OMP END PARALLEL DO
! --+>> crystallite integration <<+--
!
! based on crystallite_partionedF0,.._partionedF
! incrementing by crystallite_dt
call crystallite_stressAndItsTangent(updateJaco) ! request stress and tangent calculation for constituent grains
! --+>> state update <<+--
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
if ( materialpoint_requested(i,e) .and. &
.not. materialpoint_doneAndHappy(1,i,e)) then
if (.not. all(crystallite_converged(:,i,e))) then
materialpoint_doneAndHappy(1:2,i,e) = (/.true.,.false./)
materialpoint_converged(i,e) = .false.
else
materialpoint_doneAndHappy(1:2,i,e) = homogenization_updateState(i,e)
materialpoint_converged(i,e) = all(homogenization_updateState(i,e)) ! converged if done and happy
endif
!$OMP FLUSH(materialpoint_converged)
if (materialpoint_converged(i,e)) then
if (debug_verbosity > 2) then
!$OMP CRITICAL (distributionMPState)
debug_MaterialpointStateLoopdistribution(NiterationMPstate) = &
debug_MaterialpointStateLoopdistribution(NiterationMPstate) + 1
!$OMP END CRITICAL (distributionMPState)
endif
endif
endif
enddo
enddo
!$OMP END PARALLEL DO
enddo ! homogenization convergence loop
NiterationHomog = NiterationHomog + 1_pInt
enddo ! cutback loop
if (.not. terminallyIll ) then
call crystallite_orientations() ! calculate crystal orientations
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
call homogenization_averageStressAndItsTangent(i,e)
call homogenization_averageTemperature(i,e)
enddo; enddo
!$OMP END PARALLEL DO
else
!$OMP CRITICAL (write2out)
write (6,*)
write (6,'(a)') '<< HOMOG >> Material Point terminally ill'
write (6,*)
!$OMP END CRITICAL (write2out)
endif
return
endsubroutine
!********************************************************************
!* parallelized calculation of
!* result array at material points
!********************************************************************
subroutine materialpoint_postResults(dt)
use FEsolving, only: FEsolving_execElem, FEsolving_execIP
use mesh, only: mesh_element
use material, only: homogenization_Ngrains, microstructure_crystallite
use constitutive, only: constitutive_sizePostResults, constitutive_postResults
use crystallite, only: crystallite_sizePostResults, crystallite_postResults
implicit none
real(pReal), intent(in) :: dt
integer(pInt) g,i,e,thePos,theSize,myNgrains,myCrystallite
!$OMP PARALLEL DO PRIVATE(myNgrains,myCrystallite,thePos,theSize)
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
myCrystallite = microstructure_crystallite(mesh_element(4,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
thePos = 0_pInt
theSize = homogenization_sizePostResults(i,e)
materialpoint_results(thePos+1,i,e) = theSize ! tell size of homogenization results
thePos = thePos + 1_pInt
if (theSize > 0_pInt) then ! any homogenization results to mention?
materialpoint_results(thePos+1:thePos+theSize,i,e) = homogenization_postResults(i,e) ! tell homogenization results
thePos = thePos + theSize
endif
materialpoint_results(thePos+1,i,e) = myNgrains ! tell number of grains at materialpoint
thePos = thePos + 1_pInt
do g = 1,myNgrains ! loop over all grains
theSize = (1 + crystallite_sizePostResults(myCrystallite)) + (1 + constitutive_sizePostResults(g,i,e))
materialpoint_results(thePos+1:thePos+theSize,i,e) = crystallite_postResults(dt,g,i,e) ! tell crystallite results
thePos = thePos + theSize
enddo
enddo
enddo
!$OMP END PARALLEL DO
endsubroutine
!********************************************************************
! partition material point def grad onto constituents
!********************************************************************
subroutine homogenization_partitionDeformation(&
ip, & ! integration point
el & ! element
)
use prec, only: pReal,pInt
use mesh, only: mesh_element
use material, only: homogenization_type, homogenization_maxNgrains
use crystallite, only: crystallite_partionedF0,crystallite_partionedF
use homogenization_isostrain
use homogenization_RGC
implicit none
integer(pInt), intent(in) :: ip,el
select case(homogenization_type(mesh_element(3,el)))
case (homogenization_isostrain_label)
!* isostrain
call homogenization_isostrain_partitionDeformation(crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
crystallite_partionedF0(1:3,1:3,1:homogenization_maxNgrains,ip,el),&
materialpoint_subF(1:3,1:3,ip,el),&
homogenization_state(ip,el), &
ip, &
el)
!* RGC homogenization
case (homogenization_RGC_label)
call homogenization_RGC_partitionDeformation(crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
crystallite_partionedF0(1:3,1:3,1:homogenization_maxNgrains,ip,el),&
materialpoint_subF(1:3,1:3,ip,el),&
homogenization_state(ip,el), &
ip, &
el)
end select
endsubroutine
!********************************************************************
! update the internal state of the homogenization scheme
! and tell whether "done" and "happy" with result
!********************************************************************
function homogenization_updateState(&
ip, & ! integration point
el & ! element
)
use prec, only: pReal,pInt
use mesh, only: mesh_element
use material, only: homogenization_type, homogenization_maxNgrains
use crystallite, only: crystallite_P,crystallite_dPdF,crystallite_partionedF,crystallite_partionedF0 ! modified <<<updated 31.07.2009>>>
use homogenization_isostrain
use homogenization_RGC
implicit none
integer(pInt), intent(in) :: ip,el
logical, dimension(2) :: homogenization_updateState
select case(homogenization_type(mesh_element(3,el)))
!* isostrain
case (homogenization_isostrain_label)
homogenization_updateState = &
homogenization_isostrain_updateState( homogenization_state(ip,el), &
crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), &
ip, &
el)
!* RGC homogenization
case (homogenization_RGC_label)
homogenization_updateState = &
homogenization_RGC_updateState( homogenization_state(ip,el), &
homogenization_subState0(ip,el), &
crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
crystallite_partionedF0(1:3,1:3,1:homogenization_maxNgrains,ip,el),&
materialpoint_subF(1:3,1:3,ip,el),&
materialpoint_subdt(ip,el), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), &
ip, &
el)
end select
return
endfunction
!********************************************************************
! derive average stress and stiffness from constituent quantities
!********************************************************************
subroutine homogenization_averageStressAndItsTangent(&
ip, & ! integration point
el & ! element
)
use prec, only: pReal,pInt
use mesh, only: mesh_element
use material, only: homogenization_type, homogenization_maxNgrains
use crystallite, only: crystallite_P,crystallite_dPdF
use homogenization_RGC
use homogenization_isostrain
implicit none
integer(pInt), intent(in) :: ip,el
select case(homogenization_type(mesh_element(3,el)))
!* isostrain
case (homogenization_isostrain_label)
call homogenization_isostrain_averageStressAndItsTangent(materialpoint_P(1:3,1:3,ip,el), &
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), &
ip, &
el)
!* RGC homogenization
case (homogenization_RGC_label)
call homogenization_RGC_averageStressAndItsTangent( materialpoint_P(1:3,1:3,ip,el), &
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), &
ip, &
el)
end select
return
endsubroutine
!********************************************************************
! derive average stress and stiffness from constituent quantities
!********************************************************************
subroutine homogenization_averageTemperature(&
ip, & ! integration point
el & ! element
)
use prec, only: pReal,pInt
use mesh, only: mesh_element
use material, only: homogenization_type, homogenization_maxNgrains
use crystallite, only: crystallite_Temperature
use homogenization_isostrain
use homogenization_RGC
implicit none
integer(pInt), intent(in) :: ip,el
select case(homogenization_type(mesh_element(3,el)))
!* isostrain
case (homogenization_isostrain_label)
materialpoint_Temperature(ip,el) = &
homogenization_isostrain_averageTemperature(crystallite_Temperature(1:homogenization_maxNgrains,ip,el), ip, el)
!* RGC homogenization
case (homogenization_RGC_label)
materialpoint_Temperature(ip,el) = &
homogenization_RGC_averageTemperature(crystallite_Temperature(1:homogenization_maxNgrains,ip,el), ip, el)
end select
return
endsubroutine
!********************************************************************
! return array of homogenization results for post file inclusion
! call only, if homogenization_sizePostResults(ip,el) > 0 !!
!********************************************************************
function homogenization_postResults(&
ip, & ! integration point
el & ! element
)
use prec, only: pReal,pInt
use mesh, only: mesh_element
use material, only: homogenization_type
use homogenization_isostrain
use homogenization_RGC
implicit none
!* Definition of variables
integer(pInt), intent(in) :: ip,el
real(pReal), dimension(homogenization_sizePostResults(ip,el)) :: homogenization_postResults
homogenization_postResults = 0.0_pReal
select case (homogenization_type(mesh_element(3,el)))
!* isostrain
case (homogenization_isostrain_label)
homogenization_postResults = homogenization_isostrain_postResults(homogenization_state(ip,el),ip,el)
!* RGC homogenization
case (homogenization_RGC_label)
homogenization_postResults = homogenization_RGC_postResults(homogenization_state(ip,el),ip,el)
end select
return
endfunction
END MODULE