2021-04-01 17:17:27 +05:30
|
|
|
import bz2
|
|
|
|
import pickle
|
2020-05-26 02:35:31 +05:30
|
|
|
import time
|
2019-11-23 23:28:44 +05:30
|
|
|
import shutil
|
|
|
|
import os
|
2020-07-31 20:34:14 +05:30
|
|
|
import sys
|
2020-05-26 02:35:31 +05:30
|
|
|
from datetime import datetime
|
2019-11-23 23:28:44 +05:30
|
|
|
|
|
|
|
import pytest
|
|
|
|
import numpy as np
|
2020-05-26 02:35:31 +05:30
|
|
|
import h5py
|
2019-11-23 23:28:44 +05:30
|
|
|
|
2020-03-03 03:35:35 +05:30
|
|
|
from damask import Result
|
2020-08-24 10:58:10 +05:30
|
|
|
from damask import Rotation
|
|
|
|
from damask import Orientation
|
2020-11-16 03:44:46 +05:30
|
|
|
from damask import tensor
|
2019-11-23 23:28:44 +05:30
|
|
|
from damask import mechanics
|
2020-07-31 20:20:01 +05:30
|
|
|
from damask import grid_filters
|
2019-11-23 23:28:44 +05:30
|
|
|
|
|
|
|
@pytest.fixture
|
2020-11-30 01:20:41 +05:30
|
|
|
def default(tmp_path,ref_path):
|
2020-03-03 03:35:35 +05:30
|
|
|
"""Small Result file in temp location for modification."""
|
2019-11-23 23:28:44 +05:30
|
|
|
fname = '12grains6x7x8_tensionY.hdf5'
|
2020-11-30 01:20:41 +05:30
|
|
|
shutil.copy(ref_path/fname,tmp_path)
|
2020-07-31 20:20:01 +05:30
|
|
|
f = Result(tmp_path/fname)
|
2021-01-13 19:27:58 +05:30
|
|
|
f.view('times',20.0)
|
2019-11-23 23:28:44 +05:30
|
|
|
return f
|
|
|
|
|
2020-05-26 11:36:39 +05:30
|
|
|
@pytest.fixture
|
2020-11-30 01:20:41 +05:30
|
|
|
def single_phase(tmp_path,ref_path):
|
2020-05-26 11:36:39 +05:30
|
|
|
"""Single phase Result file in temp location for modification."""
|
|
|
|
fname = '6grains6x7x8_single_phase_tensionY.hdf5'
|
2020-11-30 01:20:41 +05:30
|
|
|
shutil.copy(ref_path/fname,tmp_path)
|
2020-07-31 20:20:01 +05:30
|
|
|
return Result(tmp_path/fname)
|
2020-05-26 11:36:39 +05:30
|
|
|
|
2019-11-23 23:28:44 +05:30
|
|
|
@pytest.fixture
|
2020-11-30 01:20:41 +05:30
|
|
|
def ref_path(ref_path_base):
|
2019-11-27 17:49:58 +05:30
|
|
|
"""Directory containing reference results."""
|
2020-11-30 01:20:41 +05:30
|
|
|
return ref_path_base/'Result'
|
2019-11-23 23:28:44 +05:30
|
|
|
|
2021-04-01 17:17:27 +05:30
|
|
|
def dict_equal(d1, d2):
|
|
|
|
for k in d1:
|
|
|
|
if (k not in d2):
|
|
|
|
return False
|
|
|
|
else:
|
|
|
|
if type(d1[k]) is dict:
|
|
|
|
return dict_equal(d1[k],d2[k])
|
|
|
|
else:
|
|
|
|
if not np.allclose(d1[k],d2[k]):
|
|
|
|
return False
|
|
|
|
return True
|
2019-11-23 23:28:44 +05:30
|
|
|
|
2020-03-03 03:35:35 +05:30
|
|
|
class TestResult:
|
2019-12-04 10:29:52 +05:30
|
|
|
|
2020-04-21 14:47:15 +05:30
|
|
|
def test_self_report(self,default):
|
|
|
|
print(default)
|
|
|
|
|
|
|
|
|
2021-01-13 19:27:58 +05:30
|
|
|
def test_view_all(self,default):
|
|
|
|
default.view('increments',True)
|
2020-05-23 14:08:25 +05:30
|
|
|
a = default.get_dataset_location('F')
|
2021-01-13 19:27:58 +05:30
|
|
|
default.view('increments','*')
|
2020-05-23 14:08:25 +05:30
|
|
|
b = default.get_dataset_location('F')
|
2021-03-25 23:52:59 +05:30
|
|
|
default.view('increments',default.increments_in_range(0,np.iinfo(int).max))
|
2020-05-23 14:08:25 +05:30
|
|
|
c = default.get_dataset_location('F')
|
|
|
|
|
2021-01-13 19:27:58 +05:30
|
|
|
default.view('times',True)
|
2020-05-23 14:08:25 +05:30
|
|
|
d = default.get_dataset_location('F')
|
2021-01-13 19:27:58 +05:30
|
|
|
default.view('times','*')
|
2020-05-23 14:08:25 +05:30
|
|
|
e = default.get_dataset_location('F')
|
2021-01-13 19:27:58 +05:30
|
|
|
default.view('times',default.times_in_range(0.0,np.inf))
|
2020-05-23 14:08:25 +05:30
|
|
|
f = default.get_dataset_location('F')
|
|
|
|
assert a == b == c == d == e ==f
|
|
|
|
|
2020-11-18 19:22:16 +05:30
|
|
|
@pytest.mark.parametrize('what',['increments','times','phases']) # ToDo: discuss homogenizations
|
2021-01-13 19:27:58 +05:30
|
|
|
def test_view_none(self,default,what):
|
|
|
|
default.view(what,False)
|
2020-05-23 14:08:25 +05:30
|
|
|
a = default.get_dataset_location('F')
|
2021-01-13 19:27:58 +05:30
|
|
|
default.view(what,[])
|
2020-05-23 14:08:25 +05:30
|
|
|
b = default.get_dataset_location('F')
|
|
|
|
|
|
|
|
assert a == b == []
|
|
|
|
|
2020-11-18 19:22:16 +05:30
|
|
|
@pytest.mark.parametrize('what',['increments','times','phases']) # ToDo: discuss homogenizations
|
2021-01-13 19:27:58 +05:30
|
|
|
def test_view_more(self,default,what):
|
|
|
|
default.view(what,False)
|
|
|
|
default.view_more(what,'*')
|
2020-05-23 14:08:25 +05:30
|
|
|
a = default.get_dataset_location('F')
|
|
|
|
|
2021-01-13 19:27:58 +05:30
|
|
|
default.view(what,True)
|
2020-05-23 14:08:25 +05:30
|
|
|
b = default.get_dataset_location('F')
|
|
|
|
|
|
|
|
assert a == b
|
|
|
|
|
2020-11-18 19:22:16 +05:30
|
|
|
@pytest.mark.parametrize('what',['increments','times','phases']) # ToDo: discuss homogenizations
|
2021-01-13 19:27:58 +05:30
|
|
|
def test_view_less(self,default,what):
|
|
|
|
default.view(what,True)
|
|
|
|
default.view_less(what,'*')
|
2020-05-23 14:08:25 +05:30
|
|
|
a = default.get_dataset_location('F')
|
|
|
|
|
2021-01-13 19:27:58 +05:30
|
|
|
default.view(what,False)
|
2020-05-23 14:08:25 +05:30
|
|
|
b = default.get_dataset_location('F')
|
|
|
|
|
|
|
|
assert a == b == []
|
|
|
|
|
2021-01-13 19:27:58 +05:30
|
|
|
def test_view_invalid(self,default):
|
2020-05-23 14:08:25 +05:30
|
|
|
with pytest.raises(AttributeError):
|
2021-01-13 19:27:58 +05:30
|
|
|
default.view('invalid',True)
|
2019-12-04 10:29:52 +05:30
|
|
|
|
2019-12-04 10:45:32 +05:30
|
|
|
def test_add_absolute(self,default):
|
2020-11-06 02:44:49 +05:30
|
|
|
default.add_absolute('F_e')
|
|
|
|
loc = {'F_e': default.get_dataset_location('F_e'),
|
|
|
|
'|F_e|': default.get_dataset_location('|F_e|')}
|
|
|
|
in_memory = np.abs(default.read_dataset(loc['F_e'],0))
|
|
|
|
in_file = default.read_dataset(loc['|F_e|'],0)
|
2019-11-23 23:28:44 +05:30
|
|
|
assert np.allclose(in_memory,in_file)
|
2020-02-01 14:12:04 +05:30
|
|
|
|
2020-07-31 20:20:01 +05:30
|
|
|
@pytest.mark.parametrize('mode',['direct','function'])
|
2020-07-31 20:34:14 +05:30
|
|
|
def test_add_calculation(self,default,tmp_path,mode):
|
2020-07-31 20:20:01 +05:30
|
|
|
|
|
|
|
if mode == 'direct':
|
|
|
|
default.add_calculation('x','2.0*np.abs(#F#)-1.0','-','my notes')
|
|
|
|
else:
|
2020-07-31 20:34:14 +05:30
|
|
|
with open(tmp_path/'f.py','w') as f:
|
|
|
|
f.write("import numpy as np\ndef my_func(field):\n return 2.0*np.abs(field)-1.0\n")
|
|
|
|
sys.path.insert(0,str(tmp_path))
|
|
|
|
import f
|
|
|
|
default.enable_user_function(f.my_func)
|
2020-07-31 20:20:01 +05:30
|
|
|
default.add_calculation('x','my_func(#F#)','-','my notes')
|
|
|
|
|
2020-02-01 14:12:04 +05:30
|
|
|
loc = {'F': default.get_dataset_location('F'),
|
|
|
|
'x': default.get_dataset_location('x')}
|
|
|
|
in_memory = 2.0*np.abs(default.read_dataset(loc['F'],0))-1.0
|
|
|
|
in_file = default.read_dataset(loc['x'],0)
|
|
|
|
assert np.allclose(in_memory,in_file)
|
2019-11-23 23:28:44 +05:30
|
|
|
|
2020-11-18 03:26:22 +05:30
|
|
|
def test_add_stress_Cauchy(self,default):
|
|
|
|
default.add_stress_Cauchy('P','F')
|
2019-11-23 23:28:44 +05:30
|
|
|
loc = {'F': default.get_dataset_location('F'),
|
|
|
|
'P': default.get_dataset_location('P'),
|
|
|
|
'sigma':default.get_dataset_location('sigma')}
|
2020-11-18 03:26:22 +05:30
|
|
|
in_memory = mechanics.stress_Cauchy(default.read_dataset(loc['P'],0),
|
|
|
|
default.read_dataset(loc['F'],0))
|
2019-11-23 23:28:44 +05:30
|
|
|
in_file = default.read_dataset(loc['sigma'],0)
|
|
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
|
2019-12-04 10:19:43 +05:30
|
|
|
def test_add_determinant(self,default):
|
|
|
|
default.add_determinant('P')
|
|
|
|
loc = {'P': default.get_dataset_location('P'),
|
|
|
|
'det(P)':default.get_dataset_location('det(P)')}
|
2020-03-17 16:52:48 +05:30
|
|
|
in_memory = np.linalg.det(default.read_dataset(loc['P'],0)).reshape(-1,1)
|
2019-12-04 10:19:43 +05:30
|
|
|
in_file = default.read_dataset(loc['det(P)'],0)
|
|
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
|
2019-12-04 10:45:32 +05:30
|
|
|
def test_add_deviator(self,default):
|
|
|
|
default.add_deviator('P')
|
|
|
|
loc = {'P' :default.get_dataset_location('P'),
|
|
|
|
's_P':default.get_dataset_location('s_P')}
|
2020-11-19 19:08:54 +05:30
|
|
|
in_memory = tensor.deviatoric(default.read_dataset(loc['P'],0))
|
2019-12-04 10:45:32 +05:30
|
|
|
in_file = default.read_dataset(loc['s_P'],0)
|
|
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
|
2020-05-27 21:06:30 +05:30
|
|
|
@pytest.mark.parametrize('eigenvalue,function',[('max',np.amax),('min',np.amin)])
|
|
|
|
def test_add_eigenvalue(self,default,eigenvalue,function):
|
2020-11-18 03:26:22 +05:30
|
|
|
default.add_stress_Cauchy('P','F')
|
2020-05-27 21:06:30 +05:30
|
|
|
default.add_eigenvalue('sigma',eigenvalue)
|
|
|
|
loc = {'sigma' :default.get_dataset_location('sigma'),
|
2020-06-25 01:04:51 +05:30
|
|
|
'lambda':default.get_dataset_location(f'lambda_{eigenvalue}(sigma)')}
|
2020-11-16 03:44:46 +05:30
|
|
|
in_memory = function(tensor.eigenvalues(default.read_dataset(loc['sigma'],0)),axis=1,keepdims=True)
|
2020-05-27 21:06:30 +05:30
|
|
|
in_file = default.read_dataset(loc['lambda'],0)
|
2020-02-15 21:25:12 +05:30
|
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
|
2020-05-27 21:06:30 +05:30
|
|
|
@pytest.mark.parametrize('eigenvalue,idx',[('max',2),('mid',1),('min',0)])
|
|
|
|
def test_add_eigenvector(self,default,eigenvalue,idx):
|
2020-11-18 03:26:22 +05:30
|
|
|
default.add_stress_Cauchy('P','F')
|
2020-05-27 21:06:30 +05:30
|
|
|
default.add_eigenvector('sigma',eigenvalue)
|
2020-02-15 21:25:12 +05:30
|
|
|
loc = {'sigma' :default.get_dataset_location('sigma'),
|
2020-06-25 01:04:51 +05:30
|
|
|
'v(sigma)':default.get_dataset_location(f'v_{eigenvalue}(sigma)')}
|
2020-11-16 03:44:46 +05:30
|
|
|
in_memory = tensor.eigenvectors(default.read_dataset(loc['sigma'],0))[:,idx]
|
2020-02-15 21:25:12 +05:30
|
|
|
in_file = default.read_dataset(loc['v(sigma)'],0)
|
|
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
|
2020-05-23 12:43:45 +05:30
|
|
|
@pytest.mark.parametrize('d',[[1,0,0],[0,1,0],[0,0,1]])
|
2020-07-01 01:13:57 +05:30
|
|
|
def test_add_IPF_color(self,default,d):
|
2020-12-02 19:15:47 +05:30
|
|
|
default.add_IPF_color(d,'O')
|
2020-11-10 01:50:56 +05:30
|
|
|
loc = {'O': default.get_dataset_location('O'),
|
|
|
|
'color': default.get_dataset_location('IPFcolor_[{} {} {}]'.format(*d))}
|
|
|
|
qu = default.read_dataset(loc['O']).view(np.double).squeeze()
|
2021-03-25 23:52:59 +05:30
|
|
|
crystal_structure = default._get_attribute(default.get_dataset_location('O')[0],'lattice')
|
2020-11-29 13:36:47 +05:30
|
|
|
c = Orientation(rotation=qu,lattice=crystal_structure)
|
2020-11-18 21:15:53 +05:30
|
|
|
in_memory = np.uint8(c.IPF_color(np.array(d))*255)
|
2020-05-23 12:43:45 +05:30
|
|
|
in_file = default.read_dataset(loc['color'])
|
|
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
|
2020-02-15 21:25:12 +05:30
|
|
|
def test_add_maximum_shear(self,default):
|
2020-11-18 03:26:22 +05:30
|
|
|
default.add_stress_Cauchy('P','F')
|
2020-02-15 21:25:12 +05:30
|
|
|
default.add_maximum_shear('sigma')
|
|
|
|
loc = {'sigma' :default.get_dataset_location('sigma'),
|
|
|
|
'max_shear(sigma)':default.get_dataset_location('max_shear(sigma)')}
|
|
|
|
in_memory = mechanics.maximum_shear(default.read_dataset(loc['sigma'],0)).reshape(-1,1)
|
|
|
|
in_file = default.read_dataset(loc['max_shear(sigma)'],0)
|
|
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
|
2020-02-16 14:34:33 +05:30
|
|
|
def test_add_Mises_strain(self,default):
|
|
|
|
t = ['V','U'][np.random.randint(0,2)]
|
|
|
|
m = np.random.random()*2.0 - 1.0
|
2020-11-16 05:42:23 +05:30
|
|
|
default.add_strain('F',t,m)
|
2020-06-25 01:04:51 +05:30
|
|
|
label = f'epsilon_{t}^{m}(F)'
|
2020-11-18 03:26:22 +05:30
|
|
|
default.add_equivalent_Mises(label)
|
2020-02-16 14:34:33 +05:30
|
|
|
loc = {label :default.get_dataset_location(label),
|
|
|
|
label+'_vM':default.get_dataset_location(label+'_vM')}
|
2020-11-18 03:26:22 +05:30
|
|
|
in_memory = mechanics.equivalent_strain_Mises(default.read_dataset(loc[label],0)).reshape(-1,1)
|
2020-02-16 14:34:33 +05:30
|
|
|
in_file = default.read_dataset(loc[label+'_vM'],0)
|
|
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
|
|
|
|
def test_add_Mises_stress(self,default):
|
2020-11-18 03:26:22 +05:30
|
|
|
default.add_stress_Cauchy('P','F')
|
|
|
|
default.add_equivalent_Mises('sigma')
|
2020-02-16 14:34:33 +05:30
|
|
|
loc = {'sigma' :default.get_dataset_location('sigma'),
|
|
|
|
'sigma_vM':default.get_dataset_location('sigma_vM')}
|
2020-11-18 03:26:22 +05:30
|
|
|
in_memory = mechanics.equivalent_stress_Mises(default.read_dataset(loc['sigma'],0)).reshape(-1,1)
|
2020-02-16 14:34:33 +05:30
|
|
|
in_file = default.read_dataset(loc['sigma_vM'],0)
|
|
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
|
2020-11-06 04:17:37 +05:30
|
|
|
def test_add_Mises_invalid(self,default):
|
2020-11-18 03:26:22 +05:30
|
|
|
default.add_stress_Cauchy('P','F')
|
2020-11-06 04:17:37 +05:30
|
|
|
default.add_calculation('sigma_y','#sigma#',unit='y')
|
2020-11-18 03:26:22 +05:30
|
|
|
default.add_equivalent_Mises('sigma_y')
|
2020-11-06 04:17:37 +05:30
|
|
|
assert default.get_dataset_location('sigma_y_vM') == []
|
|
|
|
|
|
|
|
def test_add_Mises_stress_strain(self,default):
|
2020-11-18 03:26:22 +05:30
|
|
|
default.add_stress_Cauchy('P','F')
|
2020-11-06 04:17:37 +05:30
|
|
|
default.add_calculation('sigma_y','#sigma#',unit='y')
|
|
|
|
default.add_calculation('sigma_x','#sigma#',unit='x')
|
2020-11-18 03:26:22 +05:30
|
|
|
default.add_equivalent_Mises('sigma_y',kind='strain')
|
|
|
|
default.add_equivalent_Mises('sigma_x',kind='stress')
|
2020-11-06 04:17:37 +05:30
|
|
|
loc = {'y' :default.get_dataset_location('sigma_y_vM'),
|
|
|
|
'x' :default.get_dataset_location('sigma_x_vM')}
|
|
|
|
assert not np.allclose(default.read_dataset(loc['y'],0),default.read_dataset(loc['x'],0))
|
2020-02-16 14:34:33 +05:30
|
|
|
|
2019-12-04 10:19:43 +05:30
|
|
|
def test_add_norm(self,default):
|
|
|
|
default.add_norm('F',1)
|
|
|
|
loc = {'F': default.get_dataset_location('F'),
|
|
|
|
'|F|_1':default.get_dataset_location('|F|_1')}
|
|
|
|
in_memory = np.linalg.norm(default.read_dataset(loc['F'],0),ord=1,axis=(1,2),keepdims=True)
|
|
|
|
in_file = default.read_dataset(loc['|F|_1'],0)
|
|
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
|
2020-11-18 03:26:22 +05:30
|
|
|
def test_add_stress_second_Piola_Kirchhoff(self,default):
|
|
|
|
default.add_stress_second_Piola_Kirchhoff('P','F')
|
2020-02-15 22:26:20 +05:30
|
|
|
loc = {'F':default.get_dataset_location('F'),
|
|
|
|
'P':default.get_dataset_location('P'),
|
|
|
|
'S':default.get_dataset_location('S')}
|
2020-11-18 03:26:22 +05:30
|
|
|
in_memory = mechanics.stress_second_Piola_Kirchhoff(default.read_dataset(loc['P'],0),
|
|
|
|
default.read_dataset(loc['F'],0))
|
2020-02-15 22:26:20 +05:30
|
|
|
in_file = default.read_dataset(loc['S'],0)
|
|
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
|
2020-11-10 01:50:56 +05:30
|
|
|
@pytest.mark.skip(reason='requires rework of lattice.f90')
|
2020-05-23 11:49:08 +05:30
|
|
|
@pytest.mark.parametrize('polar',[True,False])
|
|
|
|
def test_add_pole(self,default,polar):
|
|
|
|
pole = np.array([1.,0.,0.])
|
2020-11-06 02:44:49 +05:30
|
|
|
default.add_pole('O',pole,polar)
|
2020-11-10 01:50:56 +05:30
|
|
|
loc = {'O': default.get_dataset_location('O'),
|
|
|
|
'pole': default.get_dataset_location('p^{}_[1 0 0)'.format(u'rφ' if polar else 'xy'))}
|
|
|
|
rot = Rotation(default.read_dataset(loc['O']).view(np.double))
|
2020-05-23 11:49:08 +05:30
|
|
|
rotated_pole = rot * np.broadcast_to(pole,rot.shape+(3,))
|
|
|
|
xy = rotated_pole[:,0:2]/(1.+abs(pole[2]))
|
|
|
|
in_memory = xy if not polar else \
|
|
|
|
np.block([np.sqrt(xy[:,0:1]*xy[:,0:1]+xy[:,1:2]*xy[:,1:2]),np.arctan2(xy[:,1:2],xy[:,0:1])])
|
|
|
|
in_file = default.read_dataset(loc['pole'])
|
|
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
|
2020-11-20 03:16:52 +05:30
|
|
|
def test_add_rotation(self,default):
|
|
|
|
default.add_rotation('F')
|
2020-02-15 22:26:20 +05:30
|
|
|
loc = {'F': default.get_dataset_location('F'),
|
|
|
|
'R(F)': default.get_dataset_location('R(F)')}
|
2020-11-20 03:16:52 +05:30
|
|
|
in_memory = mechanics.rotation(default.read_dataset(loc['F'],0)).as_matrix()
|
2020-02-15 22:26:20 +05:30
|
|
|
in_file = default.read_dataset(loc['R(F)'],0)
|
|
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
|
2019-11-23 23:28:44 +05:30
|
|
|
def test_add_spherical(self,default):
|
|
|
|
default.add_spherical('P')
|
|
|
|
loc = {'P': default.get_dataset_location('P'),
|
|
|
|
'p_P': default.get_dataset_location('p_P')}
|
2020-11-19 19:08:54 +05:30
|
|
|
in_memory = tensor.spherical(default.read_dataset(loc['P'],0),False).reshape(-1,1)
|
2019-11-23 23:28:44 +05:30
|
|
|
in_file = default.read_dataset(loc['p_P'],0)
|
|
|
|
assert np.allclose(in_memory,in_file)
|
2020-02-15 22:26:20 +05:30
|
|
|
|
2020-02-16 14:34:33 +05:30
|
|
|
def test_add_strain(self,default):
|
|
|
|
t = ['V','U'][np.random.randint(0,2)]
|
|
|
|
m = np.random.random()*2.0 - 1.0
|
2020-11-16 05:42:23 +05:30
|
|
|
default.add_strain('F',t,m)
|
2020-06-25 01:04:51 +05:30
|
|
|
label = f'epsilon_{t}^{m}(F)'
|
2020-02-16 14:34:33 +05:30
|
|
|
loc = {'F': default.get_dataset_location('F'),
|
|
|
|
label: default.get_dataset_location(label)}
|
2020-11-16 05:42:23 +05:30
|
|
|
in_memory = mechanics.strain(default.read_dataset(loc['F'],0),t,m)
|
2020-02-16 14:34:33 +05:30
|
|
|
in_file = default.read_dataset(loc[label],0)
|
|
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
|
2020-02-15 22:26:20 +05:30
|
|
|
def test_add_stretch_right(self,default):
|
|
|
|
default.add_stretch_tensor('F','U')
|
|
|
|
loc = {'F': default.get_dataset_location('F'),
|
|
|
|
'U(F)': default.get_dataset_location('U(F)')}
|
2020-11-16 05:31:32 +05:30
|
|
|
in_memory = mechanics.stretch_right(default.read_dataset(loc['F'],0))
|
2020-02-15 22:26:20 +05:30
|
|
|
in_file = default.read_dataset(loc['U(F)'],0)
|
|
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
|
|
|
|
def test_add_stretch_left(self,default):
|
|
|
|
default.add_stretch_tensor('F','V')
|
|
|
|
loc = {'F': default.get_dataset_location('F'),
|
|
|
|
'V(F)': default.get_dataset_location('V(F)')}
|
2020-11-16 05:31:32 +05:30
|
|
|
in_memory = mechanics.stretch_left(default.read_dataset(loc['F'],0))
|
2020-02-15 22:26:20 +05:30
|
|
|
in_file = default.read_dataset(loc['V(F)'],0)
|
|
|
|
assert np.allclose(in_memory,in_file)
|
2020-05-22 22:34:02 +05:30
|
|
|
|
2020-05-26 10:19:29 +05:30
|
|
|
def test_add_invalid(self,default):
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
default.add_calculation('#invalid#*2')
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('overwrite',['off','on'])
|
|
|
|
def test_add_overwrite(self,default,overwrite):
|
2021-01-13 19:27:58 +05:30
|
|
|
default.view('times',default.times_in_range(0,np.inf)[-1])
|
2020-05-26 10:19:29 +05:30
|
|
|
|
2020-11-18 03:26:22 +05:30
|
|
|
default.add_stress_Cauchy()
|
2020-05-26 10:45:27 +05:30
|
|
|
loc = default.get_dataset_location('sigma')
|
2020-05-26 10:19:29 +05:30
|
|
|
with h5py.File(default.fname,'r') as f:
|
2020-11-05 20:43:29 +05:30
|
|
|
# h5py3 compatibility
|
|
|
|
try:
|
2021-03-25 23:52:59 +05:30
|
|
|
created_first = f[loc[0]].attrs['created'].decode()
|
2020-11-05 20:43:29 +05:30
|
|
|
except AttributeError:
|
2021-03-25 23:52:59 +05:30
|
|
|
created_first = f[loc[0]].attrs['created']
|
2020-05-26 10:19:29 +05:30
|
|
|
created_first = datetime.strptime(created_first,'%Y-%m-%d %H:%M:%S%z')
|
|
|
|
|
|
|
|
if overwrite == 'on':
|
2020-06-01 15:03:22 +05:30
|
|
|
default.allow_modification()
|
2020-05-26 10:19:29 +05:30
|
|
|
else:
|
2020-06-01 15:03:22 +05:30
|
|
|
default.disallow_modification()
|
2020-05-26 10:19:29 +05:30
|
|
|
|
|
|
|
time.sleep(2.)
|
2020-11-06 03:30:56 +05:30
|
|
|
try:
|
|
|
|
default.add_calculation('sigma','#sigma#*0.0+311.','not the Cauchy stress')
|
|
|
|
except ValueError:
|
|
|
|
pass
|
2020-05-26 10:19:29 +05:30
|
|
|
with h5py.File(default.fname,'r') as f:
|
2020-11-05 20:43:29 +05:30
|
|
|
# h5py3 compatibility
|
|
|
|
try:
|
2021-03-25 23:52:59 +05:30
|
|
|
created_second = f[loc[0]].attrs['created'].decode()
|
2020-11-05 20:43:29 +05:30
|
|
|
except AttributeError:
|
2021-03-25 23:52:59 +05:30
|
|
|
created_second = f[loc[0]].attrs['created']
|
2020-05-26 10:19:29 +05:30
|
|
|
created_second = datetime.strptime(created_second,'%Y-%m-%d %H:%M:%S%z')
|
|
|
|
if overwrite == 'on':
|
|
|
|
assert created_first < created_second and np.allclose(default.read_dataset(loc),311.)
|
|
|
|
else:
|
|
|
|
assert created_first == created_second and not np.allclose(default.read_dataset(loc),311.)
|
|
|
|
|
2020-06-01 15:03:22 +05:30
|
|
|
@pytest.mark.parametrize('allowed',['off','on'])
|
|
|
|
def test_rename(self,default,allowed):
|
|
|
|
if allowed == 'on':
|
2020-06-03 18:32:39 +05:30
|
|
|
F = default.read_dataset(default.get_dataset_location('F'))
|
2020-06-01 15:03:22 +05:30
|
|
|
default.allow_modification()
|
|
|
|
default.rename('F','new_name')
|
|
|
|
assert np.all(F == default.read_dataset(default.get_dataset_location('new_name')))
|
|
|
|
default.disallow_modification()
|
|
|
|
|
|
|
|
with pytest.raises(PermissionError):
|
|
|
|
default.rename('P','another_new_name')
|
|
|
|
|
2020-07-31 20:20:01 +05:30
|
|
|
@pytest.mark.parametrize('mode',['cell','node'])
|
|
|
|
def test_coordinates(self,default,mode):
|
|
|
|
if mode == 'cell':
|
2020-12-04 03:30:49 +05:30
|
|
|
a = grid_filters.coordinates0_point(default.cells,default.size,default.origin)
|
|
|
|
b = default.coordinates0_point.reshape(tuple(default.cells)+(3,),order='F')
|
2020-07-31 20:20:01 +05:30
|
|
|
elif mode == 'node':
|
2020-12-04 03:30:49 +05:30
|
|
|
a = grid_filters.coordinates0_node(default.cells,default.size,default.origin)
|
|
|
|
b = default.coordinates0_node.reshape(tuple(default.cells+1)+(3,),order='F')
|
2020-07-31 20:20:01 +05:30
|
|
|
assert np.allclose(a,b)
|
|
|
|
|
2020-05-22 22:34:02 +05:30
|
|
|
@pytest.mark.parametrize('output',['F',[],['F','P']])
|
2020-05-26 03:09:19 +05:30
|
|
|
def test_vtk(self,tmp_path,default,output):
|
|
|
|
os.chdir(tmp_path)
|
2020-11-30 13:58:46 +05:30
|
|
|
default.save_VTK(output)
|
2020-05-26 11:36:39 +05:30
|
|
|
|
2020-10-27 21:16:08 +05:30
|
|
|
@pytest.mark.parametrize('mode',['point','cell'])
|
|
|
|
def test_vtk_mode(self,tmp_path,single_phase,mode):
|
|
|
|
os.chdir(tmp_path)
|
2020-11-30 13:58:46 +05:30
|
|
|
single_phase.save_VTK(mode=mode)
|
2020-10-27 21:16:08 +05:30
|
|
|
|
2020-12-02 17:17:56 +05:30
|
|
|
def test_XDMF(self,tmp_path,single_phase,update,ref_path):
|
2020-11-30 15:10:46 +05:30
|
|
|
for shape in [('scalar',()),('vector',(3,)),('tensor',(3,3)),('matrix',(12,))]:
|
|
|
|
for dtype in ['f4','f8','i1','i2','i4','i8','u1','u2','u4','u8']:
|
|
|
|
single_phase.add_calculation(f'{shape[0]}_{dtype}',f"np.ones(np.shape(#F#)[0:1]+{shape[1]},'{dtype}')")
|
|
|
|
fname = os.path.splitext(os.path.basename(single_phase.fname))[0]+'.xdmf'
|
2020-05-26 11:36:39 +05:30
|
|
|
os.chdir(tmp_path)
|
2020-09-21 01:34:28 +05:30
|
|
|
single_phase.save_XDMF()
|
2020-11-30 15:10:46 +05:30
|
|
|
if update:
|
2020-12-02 17:17:56 +05:30
|
|
|
shutil.copy(tmp_path/fname,ref_path/fname)
|
|
|
|
assert sorted(open(tmp_path/fname).read()) == sorted(open(ref_path/fname).read()) # XML is not ordered
|
2020-11-30 15:10:46 +05:30
|
|
|
|
|
|
|
def test_XDMF_invalid(self,default):
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
default.save_XDMF()
|
2021-04-01 17:17:27 +05:30
|
|
|
|
2021-04-01 19:22:43 +05:30
|
|
|
@pytest.mark.parametrize('view,output,compress,strip',
|
2021-04-01 17:17:27 +05:30
|
|
|
[({},['F','P','F','L_p','F_e','F_p'],True,True),
|
|
|
|
({'increments':3},'F',True,True),
|
|
|
|
({'increments':[1,8,3,4,5,6,7]},['F','P'],True,True),
|
|
|
|
({'phases':['A','B']},['F','P'],True,True),
|
|
|
|
({'phases':['A','C'],'homogenizations':False},['F','P','O'],True,True),
|
|
|
|
({'phases':False,'homogenizations':False},['F','P','O'],True,True),
|
|
|
|
({'phases':False},['Delta_V'],True,True),
|
|
|
|
({},['u_p','u_n'],False,False)],
|
|
|
|
ids=list(range(8)))
|
2021-04-01 19:22:43 +05:30
|
|
|
def test_read(self,update,request,ref_path,view,output,compress,strip):
|
2021-04-01 17:17:27 +05:30
|
|
|
result = Result(ref_path/'4grains2x4x3_compressionY.hdf5')
|
|
|
|
for key,value in view.items():
|
|
|
|
result.view(key,value)
|
|
|
|
|
|
|
|
N = request.node.name[8:].split('[')[1].split(']')[0]
|
2021-04-01 19:22:43 +05:30
|
|
|
cur = result.read(output,compress,strip)
|
2021-04-01 17:17:27 +05:30
|
|
|
if update:
|
|
|
|
with bz2.BZ2File(ref_path/f'read_{N}.pbz2','w') as f:
|
|
|
|
pickle.dump(cur,f)
|
2021-04-01 19:22:43 +05:30
|
|
|
|
2021-04-01 17:17:27 +05:30
|
|
|
with bz2.BZ2File(ref_path/f'read_{N}.pbz2') as f:
|
2021-04-01 19:22:43 +05:30
|
|
|
assert dict_equal(cur,pickle.load(f))
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('view,output,compress,constituents,strip',
|
|
|
|
[({},['F','P','F','L_p','F_e','F_p'],True,True,None),
|
|
|
|
({'increments':3},'F',True,True,[0,1,2,3,4,5,6,7]),
|
|
|
|
({'increments':[1,8,3,4,5,6,7]},['F','P'],True,True,1),
|
|
|
|
({'phases':['A','B']},['F','P'],True,True,[1,2]),
|
|
|
|
({'phases':['A','C'],'homogenizations':False},['F','P','O'],True,True,[0,7]),
|
|
|
|
({'phases':False,'homogenizations':False},['F','P','O'],True,True,[1,2,3,4]),
|
|
|
|
({'phases':False},['Delta_V'],True,True,[1,2,4]),
|
|
|
|
({},['u_p','u_n'],False,False,None)],
|
|
|
|
ids=list(range(8)))
|
|
|
|
def test_place(self,update,request,ref_path,view,output,compress,strip,constituents):
|
|
|
|
result = Result(ref_path/'4grains2x4x3_compressionY.hdf5')
|
|
|
|
for key,value in view.items():
|
|
|
|
result.view(key,value)
|
|
|
|
|
|
|
|
N = request.node.name[8:].split('[')[1].split(']')[0]
|
|
|
|
cur = result.place(output,compress,strip,constituents)
|
|
|
|
if update:
|
|
|
|
with bz2.BZ2File(ref_path/f'place_{N}.pbz2','w') as f:
|
|
|
|
pickle.dump(cur,f)
|
|
|
|
|
|
|
|
with bz2.BZ2File(ref_path/f'place_{N}.pbz2') as f:
|
|
|
|
assert dict_equal(cur,pickle.load(f))
|