more systematic names and extended docstrings

This commit is contained in:
Martin Diehl 2020-11-16 01:01:32 +01:00
parent 6f81f5278d
commit b893967b68
5 changed files with 182 additions and 71 deletions

View File

@ -1024,7 +1024,7 @@ class Result:
@staticmethod
def _add_stretch_tensor(F,t):
return {
'data': (mechanics.left_stretch if t.upper() == 'V' else mechanics.right_stretch)(F['data']),
'data': (mechanics.stretch_left if t.upper() == 'V' else mechanics.stretch_right)(F['data']),
'label': f"{t}({F['label']})",
'meta': {
'Unit': F['meta']['Unit'],

View File

@ -5,18 +5,58 @@ from . import tensor
import numpy as _np
def Cauchy(P,F):
def Cauchy_Green_deformation_left(F):
"""
Return Cauchy stress calculated from first Piola-Kirchhoff stress and deformation gradient.
Resulting tensor is symmetrized as the Cauchy stress needs to be symmetric.
Calculate left Cauchy-Green deformation tensor (Finger deformation tensor).
Parameters
----------
F : numpy.ndarray of shape (...,3,3)
Deformation gradient.
Returns
-------
B : numpy.ndarray of shape (...,3,3)
Left Cauchy-Green deformation tensor.
"""
return _np.matmul(F,tensor.transpose(F))
def Cauchy_Green_deformation_right(F):
"""
Calculate right Cauchy-Green deformation tensor.
Parameters
----------
F : numpy.ndarray of shape (...,3,3)
Deformation gradient.
Returns
-------
C : numpy.ndarray of shape (...,3,3)
Right Cauchy-Green deformation tensor.
"""
return _np.matmul(tensor.transpose(F),F)
def Cauchy(P,F):
"""
Calculate the Cauchy (true) stress.
Resulting tensor is symmetrized as the Cauchy stress needs to be symmetric.
Parameters
----------
P : numpy.ndarray of shape (...,3,3)
First Piola-Kirchhoff stress.
F : numpy.ndarray of shape (...,3,3)
Deformation gradient.
Returns
-------
sigma : numpy.ndarray of shape (...,3,3)
Cauchy stress.
"""
sigma = _np.einsum('...,...ij,...kj->...ik',1.0/_np.linalg.det(F),P,F)
@ -25,39 +65,36 @@ def Cauchy(P,F):
def deviatoric_part(T):
"""
Return deviatoric part of a tensor.
Calculate deviatoric part of a tensor.
Parameters
----------
T : numpy.ndarray of shape (...,3,3)
Tensor of which the deviatoric part is computed.
Returns
-------
T' : numpy.ndarray of shape (...,3,3)
Deviatoric part of T.
"""
return T - _np.einsum('...ij,...->...ij',_np.eye(3),spherical_part(T))
def left_stretch(T):
"""
Return the left stretch of a tensor.
Parameters
----------
T : numpy.ndarray of shape (...,3,3)
Tensor of which the left stretch is computed.
"""
return _polar_decomposition(T,'V')[0]
def maximum_shear(T_sym):
"""
Return the maximum shear component of a symmetric tensor.
Calculate the maximum shear component of a symmetric tensor.
Parameters
----------
T_sym : numpy.ndarray of shape (...,3,3)
Symmetric tensor of which the maximum shear is computed.
Returns
-------
gamma_max : numpy.ndarray of shape (...)
Maximum shear of T_sym.
"""
w = tensor.eigenvalues(T_sym)
return (w[...,0] - w[...,2])*0.5
@ -65,33 +102,46 @@ def maximum_shear(T_sym):
def Mises_strain(epsilon):
"""
Return the Mises equivalent of a strain tensor.
Calculate the Mises equivalent of a strain tensor.
Parameters
----------
epsilon : numpy.ndarray of shape (...,3,3)
Symmetric strain tensor of which the von Mises equivalent is computed.
Returns
-------
epsilon_vM : numpy.ndarray of shape (...)
Von Mises equivalent strain of epsilon.
"""
return _Mises(epsilon,2.0/3.0)
def Mises_stress(sigma):
"""
Return the Mises equivalent of a stress tensor.
Calculate the Mises equivalent of a stress tensor.
Parameters
----------
sigma : numpy.ndarray of shape (...,3,3)
Symmetric stress tensor of which the von Mises equivalent is computed.
Returns
-------
sigma_vM : numpy.ndarray of shape (...)
Von Mises equivalent stress of sigma.
"""
return _Mises(sigma,3.0/2.0)
def PK2(P,F):
"""
Calculate second Piola-Kirchhoff stress from first Piola-Kirchhoff stress and deformation gradient.
Calculate the second Piola-Kirchhoff stress.
Resulting tensor is symmetrized as the second Piola-Kirchhoff stress
needs to be symmetric.
Parameters
----------
@ -100,47 +150,51 @@ def PK2(P,F):
F : numpy.ndarray of shape (...,3,3)
Deformation gradient.
Returns
-------
S : numpy.ndarray of shape (...,3,3)
Second Piola-Kirchhoff stress.
"""
S = _np.einsum('...jk,...kl->...jl',_np.linalg.inv(F),P)
return tensor.symmetric(S)
def right_stretch(T):
"""
Return the right stretch of a tensor.
Parameters
----------
T : numpy.ndarray of shape (...,3,3)
Tensor of which the right stretch is computed.
"""
return _polar_decomposition(T,'U')[0]
def rotational_part(T):
"""
Return the rotational part of a tensor.
Calculate the rotational part of a tensor.
Parameters
----------
T : numpy.ndarray of shape (...,3,3)
Tensor of which the rotational part is computed.
Returns
-------
R : numpy.ndarray of shape (...,3,3)
Rotational part.
"""
return _polar_decomposition(T,'R')[0]
def spherical_part(T,tensor=False):
"""
Return spherical (hydrostatic) part of a tensor.
Calculate spherical (hydrostatic) part of a tensor.
Parameters
----------
T : numpy.ndarray of shape (...,3,3)
Tensor of which the hydrostatic part is computed.
tensor : bool, optional
Map spherical part onto identity tensor. Default is false
Map spherical part onto identity tensor. Defaults to false
Returns
-------
p : numpy.ndarray of shape (...)
unless tensor == True: shape (...,3,3)
Spherical part of tensor T, e.g. the hydrostatic part/pressure
of a stress tensor.
"""
sph = _np.trace(T,axis2=-2,axis1=-1)/3.0
@ -149,7 +203,7 @@ def spherical_part(T,tensor=False):
def strain_tensor(F,t,m):
"""
Return strain tensor calculated from deformation gradient.
Calculate strain tensor from deformation gradient.
For details refer to https://en.wikipedia.org/wiki/Finite_strain_theory and
https://de.wikipedia.org/wiki/Verzerrungstensor
@ -159,17 +213,21 @@ def strain_tensor(F,t,m):
F : numpy.ndarray of shape (...,3,3)
Deformation gradient.
t : {V, U}
Type of the polar decomposition, V for left stretch tensor and U for right stretch tensor.
Type of the polar decomposition, V for left stretch tensor
and U for right stretch tensor.
m : float
Order of the strain.
Returns
-------
epsilon : numpy.ndarray of shape (...,3,3)
Strain of F.
"""
if t == 'V':
B = _np.matmul(F,tensor.transpose(F))
w,n = _np.linalg.eigh(B)
w,n = _np.linalg.eigh(Cauchy_Green_deformation_left(F))
elif t == 'U':
C = _np.matmul(tensor.transpose(F),F)
w,n = _np.linalg.eigh(C)
w,n = _np.linalg.eigh(Cauchy_Green_deformation_right(F))
if m > 0.0:
eps = 1.0/(2.0*abs(m)) * (+ _np.matmul(n,_np.einsum('...j,...kj->...jk',w**m,n))
@ -184,9 +242,45 @@ def strain_tensor(F,t,m):
return eps
def stretch_left(T):
"""
Calculate left stretch of a tensor.
Parameters
----------
T : numpy.ndarray of shape (...,3,3)
Tensor of which the left stretch is computed.
Returns
-------
V : numpy.ndarray of shape (...,3,3)
Left stretch tensor from Polar decomposition of T.
"""
return _polar_decomposition(T,'V')[0]
def stretch_right(T):
"""
Calculate right stretch of a tensor.
Parameters
----------
T : numpy.ndarray of shape (...,3,3)
Tensor of which the right stretch is computed.
Returns
-------
U : numpy.ndarray of shape (...,3,3)
Left stretch tensor from Polar decomposition of T.
"""
return _polar_decomposition(T,'U')[0]
def _polar_decomposition(T,requested):
"""
Singular value decomposition.
Perform singular value decomposition.
Parameters
----------
@ -197,7 +291,7 @@ def _polar_decomposition(T,requested):
V for left stretch tensor and U for right stretch tensor.
"""
u, s, vh = _np.linalg.svd(T)
u, _, vh = _np.linalg.svd(T)
R = _np.einsum('...ij,...jk->...ik',u,vh)
output = []

View File

@ -13,58 +13,75 @@ import numpy as _np
def symmetric(T):
"""
Return the symmetrized tensor.
Symmetrize tensor.
Parameters
----------
T : numpy.ndarray of shape (...,3,3)
Tensor of which the symmetrized values are computed.
Returns
-------
T_sym : numpy.ndarray of shape (...,3,3)
Symmetrized tensor T.
"""
return (T+transpose(T))*0.5
def transpose(T):
"""
Return the transpose of a tensor.
Transpose tensor.
Parameters
----------
T : numpy.ndarray of shape (...,3,3)
Tensor of which the transpose is computed.
Returns
-------
T.T : numpy.ndarray of shape (...,3,3)
Transpose of tensor T.
"""
return _np.swapaxes(T,axis2=-2,axis1=-1)
def eigenvalues(T_sym):
"""
Return the eigenvalues, i.e. principal components, of a symmetric tensor.
The eigenvalues are sorted in ascending order, each repeated according to
its multiplicity.
Eigenvalues, i.e. principal components, of a symmetric tensor.
Parameters
----------
T_sym : numpy.ndarray of shape (...,3,3)
Symmetric tensor of which the eigenvalues are computed.
Returns
-------
lambda : numpy.ndarray of shape (...,3)
Eigenvalues of T_sym sorted in ascending order, each repeated
according to its multiplicity.
"""
return _np.linalg.eigvalsh(symmetric(T_sym))
def eigenvectors(T_sym,RHS=False):
"""
Return eigenvectors of a symmetric tensor.
The eigenvalues are sorted in ascending order of their associated eigenvalues.
Eigenvectors of a symmetric tensor.
Parameters
----------
T_sym : numpy.ndarray of shape (...,3,3)
Symmetric tensor of which the eigenvectors are computed.
RHS: bool, optional
Enforce right-handed coordinate system. Default is False.
Enforce right-handed coordinate system. Defaults to False.
Returns
-------
x : numpy.ndarray of shape (...,3,3)
Eigenvectors of T_sym sorted in ascending order of their
associated eigenvalues.
"""
(u,v) = _np.linalg.eigh(symmetric(T_sym))

View File

@ -292,7 +292,7 @@ class TestResult:
default.add_stretch_tensor('F','U')
loc = {'F': default.get_dataset_location('F'),
'U(F)': default.get_dataset_location('U(F)')}
in_memory = mechanics.right_stretch(default.read_dataset(loc['F'],0))
in_memory = mechanics.stretch_right(default.read_dataset(loc['F'],0))
in_file = default.read_dataset(loc['U(F)'],0)
assert np.allclose(in_memory,in_file)
@ -300,7 +300,7 @@ class TestResult:
default.add_stretch_tensor('F','V')
loc = {'F': default.get_dataset_location('F'),
'V(F)': default.get_dataset_location('V(F)')}
in_memory = mechanics.left_stretch(default.read_dataset(loc['F'],0))
in_memory = mechanics.stretch_left(default.read_dataset(loc['F'],0))
in_file = default.read_dataset(loc['V(F)'],0)
assert np.allclose(in_memory,in_file)

View File

@ -17,10 +17,6 @@ def eigenvalues(T_sym):
return np.linalg.eigvalsh(symmetric(T_sym))
def left_stretch(T):
return polar_decomposition(T,'V')[0]
def maximum_shear(T_sym):
w = eigenvalues(T_sym)
return (w[0] - w[2])*0.5
@ -39,10 +35,6 @@ def PK2(P,F):
return symmetric(S)
def right_stretch(T):
return polar_decomposition(T,'U')[0]
def rotational_part(T):
return polar_decomposition(T,'R')[0]
@ -73,6 +65,14 @@ def strain_tensor(F,t,m):
return eps
def stretch_left(T):
return polar_decomposition(T,'V')[0]
def stretch_right(T):
return polar_decomposition(T,'U')[0]
def symmetric(T):
return (T+T.T)*0.5
@ -113,13 +113,13 @@ class TestMechanics:
assert np.allclose(single(test_data_flat[i]),v)
@pytest.mark.parametrize('vectorized,single',[(mechanics.deviatoric_part, deviatoric_part),
(mechanics.left_stretch , left_stretch ),
(mechanics.maximum_shear , maximum_shear ),
(mechanics.Mises_strain , Mises_strain ),
(mechanics.Mises_stress , Mises_stress ),
(mechanics.right_stretch , right_stretch ),
(mechanics.rotational_part, rotational_part),
(mechanics.spherical_part , spherical_part ),
(mechanics.stretch_left , stretch_left ),
(mechanics.stretch_right , stretch_right ),
])
def test_vectorize_1_arg(self,vectorized,single):
epsilon = np.random.rand(self.n,3,3)
@ -166,8 +166,8 @@ class TestMechanics:
"""F = RU = VR."""
F = np.broadcast_to(np.eye(3),[self.n,3,3])*np.random.rand(self.n,3,3)
R = mechanics.rotational_part(F)
V = mechanics.left_stretch(F)
U = mechanics.right_stretch(F)
V = mechanics.stretch_left(F)
U = mechanics.stretch_right(F)
assert np.allclose(np.matmul(R,U),
np.matmul(V,R))