2016-05-11 14:31:39 +05:30
|
|
|
#!/usr/bin/env python2
|
2015-01-23 06:27:10 +05:30
|
|
|
# -*- coding: UTF-8 no BOM -*-
|
|
|
|
|
2016-03-01 22:55:14 +05:30
|
|
|
import os,sys
|
2015-01-23 06:27:10 +05:30
|
|
|
import numpy as np
|
|
|
|
from optparse import OptionParser
|
|
|
|
import damask
|
|
|
|
|
2016-01-27 22:36:00 +05:30
|
|
|
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
|
|
|
scriptID = ' '.join([scriptName,damask.version])
|
2015-01-23 06:27:10 +05:30
|
|
|
|
|
|
|
# --------------------------------------------------------------------
|
|
|
|
# MAIN
|
|
|
|
# --------------------------------------------------------------------
|
|
|
|
|
|
|
|
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
2015-07-15 22:27:03 +05:30
|
|
|
Replace all rows for which column 'label' has identical values by a single row containing their average.
|
|
|
|
Output table will contain as many rows as there are different (unique) values in the grouping column.
|
2015-01-23 06:27:10 +05:30
|
|
|
|
|
|
|
Examples:
|
2015-07-15 22:27:03 +05:30
|
|
|
For grain averaged values, replace all rows of particular 'texture' with a single row containing their average.
|
2015-01-23 06:27:10 +05:30
|
|
|
""", version = scriptID)
|
|
|
|
|
2015-08-08 00:33:26 +05:30
|
|
|
parser.add_option('-l','--label',
|
|
|
|
dest = 'label',
|
|
|
|
type = 'string', metavar = 'string',
|
|
|
|
help = 'column label for grouping rows')
|
|
|
|
|
2015-01-23 06:27:10 +05:30
|
|
|
(options,filenames) = parser.parse_args()
|
|
|
|
|
2016-03-02 02:05:59 +05:30
|
|
|
if options.label is None:
|
2015-08-08 00:33:26 +05:30
|
|
|
parser.error('no grouping column specified.')
|
2015-01-23 06:27:10 +05:30
|
|
|
|
|
|
|
|
2015-07-15 22:27:03 +05:30
|
|
|
# --- loop over input files -------------------------------------------------------------------------
|
2015-01-23 06:27:10 +05:30
|
|
|
|
2015-08-21 01:12:05 +05:30
|
|
|
if filenames == []: filenames = [None]
|
2015-01-23 06:27:10 +05:30
|
|
|
|
2015-07-15 22:27:03 +05:30
|
|
|
for name in filenames:
|
2016-04-06 01:47:55 +05:30
|
|
|
damask.util.croak(name)
|
|
|
|
|
|
|
|
try: table = damask.ASCIItable(name = name,
|
|
|
|
outname = os.path.join(
|
|
|
|
os.path.split(name)[0],
|
|
|
|
options.label+'_averaged_'+os.path.split(name)[1]
|
|
|
|
) if name else name,
|
|
|
|
buffered = False)
|
2015-08-21 01:12:05 +05:30
|
|
|
except: continue
|
2015-09-24 14:54:42 +05:30
|
|
|
damask.util.report(scriptName,name)
|
2015-01-23 06:27:10 +05:30
|
|
|
|
2015-08-08 00:33:26 +05:30
|
|
|
# ------------------------------------------ sanity checks ---------------------------------------
|
2015-07-15 22:27:03 +05:30
|
|
|
|
2015-08-08 00:33:26 +05:30
|
|
|
table.head_read()
|
2015-07-15 22:27:03 +05:30
|
|
|
if table.label_dimension(options.label) != 1:
|
2015-09-24 14:54:42 +05:30
|
|
|
damask.util.croak('column {} is not of scalar dimension.'.format(options.label))
|
2015-07-15 22:27:03 +05:30
|
|
|
table.close(dismiss = True) # close ASCIItable and remove empty file
|
|
|
|
continue
|
2015-01-23 06:27:10 +05:30
|
|
|
|
2015-08-08 00:33:26 +05:30
|
|
|
# ------------------------------------------ assemble info ---------------------------------------
|
2015-01-23 06:27:10 +05:30
|
|
|
|
2015-08-08 00:33:26 +05:30
|
|
|
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
2015-01-23 06:27:10 +05:30
|
|
|
table.head_write()
|
|
|
|
|
|
|
|
# ------------------------------------------ process data --------------------------------
|
|
|
|
|
2015-07-15 22:27:03 +05:30
|
|
|
table.data_readArray()
|
|
|
|
rows,cols = table.data.shape
|
2015-01-23 06:27:10 +05:30
|
|
|
|
2015-07-15 22:27:03 +05:30
|
|
|
table.data = table.data[np.lexsort([table.data[:,table.label_index(options.label)]])]
|
2015-01-23 06:27:10 +05:30
|
|
|
|
2015-08-08 00:33:26 +05:30
|
|
|
values,index = np.unique(table.data[:,table.label_index(options.label)], return_index = True)
|
2015-01-23 06:27:10 +05:30
|
|
|
index = np.append(index,rows)
|
|
|
|
avgTable = np.empty((len(values), cols))
|
|
|
|
|
|
|
|
for j in xrange(cols) :
|
|
|
|
for i in xrange(len(values)) :
|
|
|
|
avgTable[i,j] = np.average(table.data[index[i]:index[i+1],j])
|
|
|
|
|
|
|
|
table.data = avgTable
|
2015-07-15 22:27:03 +05:30
|
|
|
|
2015-01-23 06:27:10 +05:30
|
|
|
# ------------------------------------------ output result -------------------------------
|
|
|
|
|
2015-07-15 22:27:03 +05:30
|
|
|
table.data_writeArray()
|
2015-08-08 00:33:26 +05:30
|
|
|
table.close() # close ASCII table
|