DAMASK_EICMD/processing/post/addCurl.py

170 lines
7.2 KiB
Python
Raw Normal View History

#!/usr/bin/env python
# -*- coding: UTF-8 no BOM -*-
import os,sys,math
import numpy as np
from optparse import OptionParser
import damask
scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version])
def curlFFT(geomdim,field):
grid = np.array(np.shape(field)[2::-1])
2016-03-17 00:42:53 +05:30
N = grid.prod() # field size
n = np.array(np.shape(field)[3:]).prod() # data size
if n == 3: dataType = 'vector'
elif n == 9: dataType = 'tensor'
field_fourier = np.fft.fftpack.rfftn(field,axes=(0,1,2))
curl_fourier = np.zeros(field_fourier.shape,'c16')
# differentiation in Fourier space
k_s = np.zeros([3],'i')
TWOPIIMG = 2.0j*math.pi
2015-12-15 11:46:47 +05:30
for i in xrange(grid[2]):
k_s[0] = i
2016-03-17 00:42:53 +05:30
if grid[2]%2 == 0 and i == grid[2]//2: k_s[0] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
elif i > grid[2]//2: k_s[0] -= grid[2]
for j in xrange(grid[1]):
k_s[1] = j
2016-03-17 00:42:53 +05:30
if grid[1]%2 == 0 and j == grid[1]//2: k_s[1] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
elif j > grid[1]//2: k_s[1] -= grid[1]
2015-12-15 11:46:47 +05:30
for k in xrange(grid[0]//2+1):
k_s[2] = k
2016-03-17 00:42:53 +05:30
if grid[0]%2 == 0 and k == grid[0]//2: k_s[2] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
2016-03-17 00:42:53 +05:30
xi = (k_s/geomdim)[2::-1].astype('c16') # reversing the field input order
if dataType == 'tensor':
for l in xrange(3):
curl_fourier[i,j,k,0,l] = ( field_fourier[i,j,k,l,2]*xi[1]\
-field_fourier[i,j,k,l,1]*xi[2]) *TWOPIIMG
curl_fourier[i,j,k,1,l] = (-field_fourier[i,j,k,l,2]*xi[0]\
+field_fourier[i,j,k,l,0]*xi[2]) *TWOPIIMG
curl_fourier[i,j,k,2,l] = ( field_fourier[i,j,k,l,1]*xi[0]\
-field_fourier[i,j,k,l,0]*xi[1]) *TWOPIIMG
elif dataType == 'vector':
curl_fourier[i,j,k,0] = ( field_fourier[i,j,k,2]*xi[1]\
-field_fourier[i,j,k,1]*xi[2]) *TWOPIIMG
curl_fourier[i,j,k,1] = (-field_fourier[i,j,k,2]*xi[0]\
+field_fourier[i,j,k,0]*xi[2]) *TWOPIIMG
curl_fourier[i,j,k,2] = ( field_fourier[i,j,k,1]*xi[0]\
-field_fourier[i,j,k,0]*xi[1]) *TWOPIIMG
return np.fft.fftpack.irfftn(curl_fourier,axes=(0,1,2)).reshape([N,n])
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Add column(s) containing curl of requested column(s).
Operates on periodic ordered three-dimensional data sets.
Deals with both vector- and tensor-valued fields.
""", version = scriptID)
parser.add_option('-c','--coordinates',
dest = 'coords',
type = 'string', metavar='string',
help = 'column heading for coordinates [%default]')
parser.add_option('-v','--vector',
dest = 'vector',
action = 'extend', metavar = '<string LIST>',
help = 'heading of columns containing vector field values')
parser.add_option('-t','--tensor',
dest = 'tensor',
action = 'extend', metavar = '<string LIST>',
help = 'heading of columns containing tensor field values')
parser.set_defaults(coords = 'ipinitialcoord',
)
(options,filenames) = parser.parse_args()
if options.vector is None and options.tensor is None:
parser.error('no data column specified.')
# --- loop over input files -------------------------------------------------------------------------
2015-08-13 14:02:09 +05:30
if filenames == []: filenames = [None]
for name in filenames:
try: table = damask.ASCIItable(name = name,buffered = False)
except: continue
damask.util.report(scriptName,name)
# ------------------------------------------ read header ------------------------------------------
table.head_read()
# ------------------------------------------ sanity checks ----------------------------------------
items = {
'tensor': {'dim': 9, 'shape': [3,3], 'labels':options.tensor, 'active':[], 'column': []},
'vector': {'dim': 3, 'shape': [3], 'labels':options.vector, 'active':[], 'column': []},
}
errors = []
remarks = []
column = {}
if table.label_dimension(options.coords) != 3: errors.append('coordinates {} are not a vector.'.format(options.coords))
2015-12-15 11:46:47 +05:30
else: colCoord = table.label_index(options.coords)
for type, data in items.iteritems():
2015-08-13 14:02:09 +05:30
for what in (data['labels'] if data['labels'] is not None else []):
dim = table.label_dimension(what)
if dim != data['dim']: remarks.append('column {} is not a {}.'.format(what,type))
else:
items[type]['active'].append(what)
items[type]['column'].append(table.label_index(what))
if remarks != []: damask.util.croak(remarks)
if errors != []:
damask.util.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header --------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
for type, data in items.iteritems():
for label in data['active']:
table.labels_append(['{}_curlFFT({})'.format(i+1,label) for i in xrange(data['dim'])]) # extend ASCII header with new labels
table.head_write()
# --------------- figure out size and grid ---------------------------------------------------------
table.data_readArray()
2015-12-15 11:46:47 +05:30
coords = [np.unique(table.data[:,colCoord+i]) for i in xrange(3)]
mincorner = np.array(map(min,coords))
maxcorner = np.array(map(max,coords))
grid = np.array(map(len,coords),'i')
size = grid/np.maximum(np.ones(3,'d'), grid-1.0) * (maxcorner-mincorner) # size from edge to edge = dim * n/(n-1)
size = np.where(grid > 1, size, min(size[grid > 1]/grid[grid > 1]))
# ------------------------------------------ process value field -----------------------------------
stack = [table.data]
for type, data in items.iteritems():
for i,label in enumerate(data['active']):
2016-03-17 00:42:53 +05:30
# we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
stack.append(curlFFT(size[::-1],
table.data[:,data['column'][i]:data['column'][i]+data['dim']].
reshape([grid[2],grid[1],grid[0]]+data['shape'])))
# ------------------------------------------ output result -----------------------------------------
if len(stack) > 1: table.data = np.hstack(tuple(stack))
table.data_writeArray('%.12g')
# ------------------------------------------ output finalization -----------------------------------
table.close() # close input ASCII table (works for stdin)