21 lines
1.2 KiB
TeX
21 lines
1.2 KiB
TeX
|
\chapter{Crystallographic orientations}
|
||
|
\section{Bunge Euler angles}
|
||
|
\label{bunges}
|
||
|
Euler angles (\beaphiI, \beaPhi , \beaphiII) -- in Bunge convention -- rotate the sample coordinate system ($X$,~$Y$,~$Z$ or RD,~TD,~ND) into the crystal coordinate system ($x_c$, $y_c$, $z_c$).
|
||
|
Three successive rotations are carried out in the following way \citep[pg.\,4]{Bunge1982}:
|
||
|
\begin{enumerate}
|
||
|
\item Rotate by angle $\pI$ around Z, to bring X into the $x_c$--$y_c$-plane. The new intermediate axes are X', Y' and Z (Z is unchanged).
|
||
|
\item Now rotate $\beaPhi$ degrees around X', to make Z parallel with $z_c$. The intermediate axes are X', Y'', Z'.
|
||
|
\item A rotation by angle $\pII$ around Z' makes the rotated axes then identical to the crystal axes.
|
||
|
\end{enumerate}
|
||
|
|
||
|
The rotation matrix can be calculated as
|
||
|
\[% Gottstein pg 55
|
||
|
\bsym{g}=\left(\begin{array}{ccc}
|
||
|
\cos{\pI}\cos{\pII}-\sin{\pI}\sin{\pII}\cos{\beaPhi} & \sin{\pI}\cos{\pII}+\cos{\pI}\sin{\pII}\cos{\beaPhi}& \sin{\pII}\sin{\beaPhi}\\
|
||
|
-\cos{\pI}\sin{\pII}-\sin{\pI}\cos{\pII}\cos{\beaPhi} & -\sin{\pI}\cos{\pII}+\cos{\pI}\cos{\pII}\cos{\beaPhi}& \cos{\pII}\sin{\beaPhi}\\
|
||
|
\sin{\pI}\sin{\beaPhi} & -\cos{\pI}\sin{\beaPhi}& \cos{\beaPhi}
|
||
|
\end{array}\right)
|
||
|
\]
|
||
|
|