\chapter{Crystallographic orientations} \section{Bunge Euler angles} \label{bunges} Euler angles (\beaphiI, \beaPhi , \beaphiII) -- in Bunge convention -- rotate the sample coordinate system ($X$,~$Y$,~$Z$ or RD,~TD,~ND) into the crystal coordinate system ($x_c$, $y_c$, $z_c$). Three successive rotations are carried out in the following way \citep[pg.\,4]{Bunge1982}: \begin{enumerate} \item Rotate by angle $\pI$ around Z, to bring X into the $x_c$--$y_c$-plane. The new intermediate axes are X', Y' and Z (Z is unchanged). \item Now rotate $\beaPhi$ degrees around X', to make Z parallel with $z_c$. The intermediate axes are X', Y'', Z'. \item A rotation by angle $\pII$ around Z' makes the rotated axes then identical to the crystal axes. \end{enumerate} The rotation matrix can be calculated as \[% Gottstein pg 55 \bsym{g}=\left(\begin{array}{ccc} \cos{\pI}\cos{\pII}-\sin{\pI}\sin{\pII}\cos{\beaPhi} & \sin{\pI}\cos{\pII}+\cos{\pI}\sin{\pII}\cos{\beaPhi}& \sin{\pII}\sin{\beaPhi}\\ -\cos{\pI}\sin{\pII}-\sin{\pI}\cos{\pII}\cos{\beaPhi} & -\sin{\pI}\cos{\pII}+\cos{\pI}\cos{\pII}\cos{\beaPhi}& \cos{\pII}\sin{\beaPhi}\\ \sin{\pI}\sin{\beaPhi} & -\cos{\pI}\sin{\beaPhi}& \cos{\beaPhi} \end{array}\right) \]