DAMASK_EICMD/python/tests/test_mechanics.py

245 lines
9.2 KiB
Python
Raw Normal View History

2020-04-22 12:28:43 +05:30
import pytest
2019-11-22 00:30:28 +05:30
import numpy as np
2020-04-22 12:28:43 +05:30
from damask import tensor
2019-11-22 00:30:28 +05:30
from damask import mechanics
2020-11-18 03:26:22 +05:30
def stress_Cauchy(P,F):
sigma = 1.0/np.linalg.det(F) * np.dot(P,F.T)
return symmetric(sigma)
def deviatoric_part(T):
return T - np.eye(3)*spherical_part(T)
def eigenvalues(T_sym):
return np.linalg.eigvalsh(symmetric(T_sym))
def maximum_shear(T_sym):
w = eigenvalues(T_sym)
return (w[0] - w[2])*0.5
2020-11-18 03:26:22 +05:30
def equivalent_strain_Mises(epsilon):
return equivalent_Mises(epsilon,2.0/3.0)
2020-11-18 03:26:22 +05:30
def equivalent_stress_Mises(sigma):
return equivalent_Mises(sigma,3.0/2.0)
2020-11-18 03:26:22 +05:30
def stress_second_Piola_Kirchhoff(P,F):
2020-06-09 17:56:22 +05:30
S = np.dot(np.linalg.inv(F),P)
return symmetric(S)
def rotational_part(T):
return polar_decomposition(T,'R')[0]
def spherical_part(T,tensor=False):
sph = np.trace(T)/3.0
return sph if not tensor else np.eye(3)*sph
2020-11-16 05:42:23 +05:30
def strain(F,t,m):
if t == 'V':
B = np.matmul(F,F.T)
w,n = np.linalg.eigh(B)
elif t == 'U':
C = np.matmul(F.T,F)
w,n = np.linalg.eigh(C)
if m > 0.0:
eps = 1.0/(2.0*abs(m)) * (+ np.matmul(n,np.einsum('j,kj->jk',w**m,n))
- np.eye(3))
elif m < 0.0:
eps = 1.0/(2.0*abs(m)) * (- np.matmul(n,np.einsum('j,kj->jk',w**m,n))
+ np.eye(3))
else:
eps = np.matmul(n,np.einsum('j,kj->jk',0.5*np.log(w),n))
return eps
def stretch_left(T):
return polar_decomposition(T,'V')[0]
def stretch_right(T):
return polar_decomposition(T,'U')[0]
def symmetric(T):
return (T+T.T)*0.5
def polar_decomposition(T,requested):
u, s, vh = np.linalg.svd(T)
R = np.dot(u,vh)
output = []
if 'R' in requested:
output.append(R)
if 'V' in requested:
output.append(np.dot(T,R.T))
if 'U' in requested:
output.append(np.dot(R.T,T))
return tuple(output)
2020-11-18 03:26:22 +05:30
def equivalent_Mises(T_sym,s):
return np.sqrt(s*(np.sum(deviatoric_part(T_sym)**2.0)))
2019-11-22 00:30:28 +05:30
class TestMechanics:
2019-11-22 01:31:01 +05:30
n = 1000
2019-11-22 00:30:28 +05:30
c = np.random.randint(n)
2019-11-22 00:30:28 +05:30
@pytest.mark.parametrize('vectorized,single',[(mechanics.deviatoric_part, deviatoric_part),
(mechanics.spherical_part, spherical_part)
])
def test_vectorize_1_arg_(self,vectorized,single):
print("done")
2020-05-28 00:37:48 +05:30
test_data_flat = np.random.rand(self.n,3,3)
test_data = np.reshape(test_data_flat,(self.n//10,10,3,3))
for i,v in enumerate(np.reshape(vectorized(test_data),vectorized(test_data_flat).shape)):
assert np.allclose(single(test_data_flat[i]),v)
2020-11-18 03:26:22 +05:30
@pytest.mark.parametrize('vectorized,single',[(mechanics.deviatoric_part, deviatoric_part),
(mechanics.maximum_shear, maximum_shear),
(mechanics.equivalent_stress_Mises, equivalent_stress_Mises),
(mechanics.equivalent_strain_Mises, equivalent_strain_Mises),
(mechanics.rotational_part, rotational_part),
(mechanics.spherical_part, spherical_part),
(mechanics.stretch_left, stretch_left),
(mechanics.stretch_right, stretch_right),
])
def test_vectorize_1_arg(self,vectorized,single):
epsilon = np.random.rand(self.n,3,3)
epsilon_vec = np.reshape(epsilon,(self.n//10,10,3,3))
for i,v in enumerate(np.reshape(vectorized(epsilon_vec),vectorized(epsilon).shape)):
assert np.allclose(single(epsilon[i]),v)
2020-04-22 12:28:43 +05:30
2020-11-18 03:26:22 +05:30
@pytest.mark.parametrize('vectorized,single',[(mechanics.stress_Cauchy, stress_Cauchy),
(mechanics.stress_second_Piola_Kirchhoff, stress_second_Piola_Kirchhoff)
])
def test_vectorize_2_arg(self,vectorized,single):
P = np.random.rand(self.n,3,3)
F = np.random.rand(self.n,3,3)
2020-06-10 01:03:13 +05:30
P_vec = np.reshape(P,(self.n//10,10,3,3))
F_vec = np.reshape(F,(self.n//10,10,3,3))
for i,v in enumerate(np.reshape(vectorized(P_vec,F_vec),vectorized(P,F).shape)):
assert np.allclose(single(P[i],F[i]),v)
2020-11-16 05:42:23 +05:30
@pytest.mark.parametrize('vectorized,single',[(mechanics.strain,strain)])
def test_vectorize_strain(self,vectorized,single):
F = np.random.rand(self.n,3,3)
2020-06-10 01:03:13 +05:30
F_vec = np.reshape(F,(self.n//10,10,3,3))
t = ['V','U'][np.random.randint(0,2)]
m = np.random.random()*10.0 -5.0
for i,v in enumerate(np.reshape(vectorized(F_vec,t,m),vectorized(F,t,m).shape)):
2020-06-09 18:09:17 +05:30
assert np.allclose(single(F[i],t,m),v)
2019-11-22 00:30:28 +05:30
2020-11-18 03:26:22 +05:30
@pytest.mark.parametrize('function',[mechanics.stress_Cauchy,
mechanics.stress_second_Piola_Kirchhoff,
2020-05-01 18:23:40 +05:30
])
def test_stress_measures(self,function):
"""Ensure that all stress measures are equivalent for no deformation."""
2020-04-22 12:28:43 +05:30
P = np.random.rand(self.n,3,3)
assert np.allclose(function(P,np.broadcast_to(np.eye(3),(self.n,3,3))),tensor.symmetric(P))
2019-11-22 00:30:28 +05:30
def test_deviatoric_part(self):
I_n = np.broadcast_to(np.eye(3),(self.n,3,3))
r = np.logical_not(I_n)*np.random.rand(self.n,3,3)
assert np.allclose(mechanics.deviatoric_part(I_n+r),r)
def test_polar_decomposition(self):
2020-02-16 13:45:12 +05:30
"""F = RU = VR."""
2020-04-22 12:28:43 +05:30
F = np.broadcast_to(np.eye(3),[self.n,3,3])*np.random.rand(self.n,3,3)
2020-02-16 13:45:12 +05:30
R = mechanics.rotational_part(F)
V = mechanics.stretch_left(F)
U = mechanics.stretch_right(F)
2020-02-16 13:45:12 +05:30
assert np.allclose(np.matmul(R,U),
np.matmul(V,R))
@pytest.mark.parametrize('m',[0.0,np.random.random()*10.,np.random.random()*-10.])
2020-11-16 05:42:23 +05:30
def test_strain_no_rotation(self,m):
2020-02-16 13:45:12 +05:30
"""Ensure that left and right stretch give same results for no rotation."""
2020-04-22 12:28:43 +05:30
F = np.broadcast_to(np.eye(3),[self.n,3,3])*np.random.rand(self.n,3,3)
2020-11-16 05:42:23 +05:30
assert np.allclose(mechanics.strain(F,'U',m),
mechanics.strain(F,'V',m))
@pytest.mark.parametrize('m',[0.0,np.random.random()*2.5,np.random.random()*-2.5])
2020-11-16 05:42:23 +05:30
def test_strain_rotation_equivalence(self,m):
2020-02-16 13:45:12 +05:30
"""Ensure that left and right strain differ only by a rotation."""
2020-04-22 12:28:43 +05:30
F = np.broadcast_to(np.eye(3),[self.n,3,3]) + (np.random.rand(self.n,3,3)*0.5 - 0.25)
2020-11-16 05:42:23 +05:30
assert np.allclose(np.linalg.det(mechanics.strain(F,'U',m)),
np.linalg.det(mechanics.strain(F,'V',m)))
2019-11-22 00:30:28 +05:30
@pytest.mark.parametrize('m',[0.0,np.random.random(),np.random.random()*-1.])
@pytest.mark.parametrize('t',['V','U'])
2020-11-16 05:42:23 +05:30
def test_strain_rotation(self,m,t):
2020-02-16 13:45:12 +05:30
"""Ensure that pure rotation results in no strain."""
2020-04-22 12:28:43 +05:30
F = mechanics.rotational_part(np.random.rand(self.n,3,3))
2020-11-16 05:42:23 +05:30
assert np.allclose(mechanics.strain(F,t,m),
2020-02-16 13:45:12 +05:30
0.0)
def test_rotation_determinant(self):
2020-02-16 13:45:12 +05:30
"""
Ensure that the determinant of the rotational part is +- 1.
2020-02-16 13:45:12 +05:30
Should be +1, but random F might contain a reflection.
"""
2020-04-22 12:28:43 +05:30
x = np.random.rand(self.n,3,3)
2020-02-16 13:45:12 +05:30
assert np.allclose(np.abs(np.linalg.det(mechanics.rotational_part(x))),
1.0)
2019-11-22 00:30:28 +05:30
def test_spherical_deviatoric_part(self):
2020-02-16 13:45:12 +05:30
"""Ensure that full tensor is sum of spherical and deviatoric part."""
2020-04-22 12:28:43 +05:30
x = np.random.rand(self.n,3,3)
2020-02-16 13:45:12 +05:30
sph = mechanics.spherical_part(x,True)
assert np.allclose(sph + mechanics.deviatoric_part(x),
x)
2019-11-22 00:30:28 +05:30
def test_deviatoric_Mises(self):
2020-02-16 13:45:12 +05:30
"""Ensure that Mises equivalent stress depends only on deviatoric part."""
2020-04-22 12:28:43 +05:30
x = np.random.rand(self.n,3,3)
2020-11-18 03:26:22 +05:30
full = mechanics.equivalent_stress_Mises(x)
dev = mechanics.equivalent_stress_Mises(mechanics.deviatoric_part(x))
2020-02-16 13:45:12 +05:30
assert np.allclose(full,
dev)
def test_spherical_mapping(self):
2020-02-16 13:45:12 +05:30
"""Ensure that mapping to tensor is correct."""
2020-04-22 12:28:43 +05:30
x = np.random.rand(self.n,3,3)
tnsr = mechanics.spherical_part(x,True)
2020-02-16 13:45:12 +05:30
scalar = mechanics.spherical_part(x)
assert np.allclose(np.linalg.det(tnsr),
2020-02-16 13:45:12 +05:30
scalar**3.0)
def test_spherical_Mises(self):
2020-11-16 11:42:37 +05:30
"""Ensure that Mises equivalent strain of spherical strain is 0."""
2020-04-22 12:28:43 +05:30
x = np.random.rand(self.n,3,3)
2020-02-16 13:45:12 +05:30
sph = mechanics.spherical_part(x,True)
2020-11-18 03:26:22 +05:30
assert np.allclose(mechanics.equivalent_strain_Mises(sph),
2020-02-16 13:45:12 +05:30
0.0)
2019-11-22 00:30:28 +05:30
2019-11-22 01:31:01 +05:30
def test_Mises(self):
2020-02-16 13:45:12 +05:30
"""Ensure that equivalent stress is 3/2 of equivalent strain."""
2020-04-22 12:28:43 +05:30
x = np.random.rand(self.n,3,3)
2020-11-18 03:26:22 +05:30
assert np.allclose(mechanics.equivalent_stress_Mises(x)/mechanics.equivalent_strain_Mises(x),
2020-02-16 13:45:12 +05:30
1.5)
2020-02-15 21:25:12 +05:30
def test_spherical_no_shear(self):
2020-02-16 13:45:12 +05:30
"""Ensure that sherical stress has max shear of 0.0."""
A = mechanics.spherical_part(tensor.symmetric(np.random.rand(self.n,3,3)),True)
2020-02-16 13:45:12 +05:30
assert np.allclose(mechanics.maximum_shear(A),0.0)