DAMASK_EICMD/lib/damask/colormaps.py

386 lines
16 KiB
Python
Raw Normal View History

#!/usr/bin/env python
2013-01-09 00:17:44 +05:30
class Color():
'''
Conversion of colors between different color-spaces. Colors should be given in the form
Color('model',[vector]).To convert and copy color from one space to other, use the methods
to('model') and asModel('model')spectively
'''
2013-01-09 00:17:44 +05:30
import numpy
__slots__ = [
'model',
2013-01-09 00:17:44 +05:30
'color',
]
# ------------------------------------------------------------------
def __init__(self,
model = 'RGB',
color = numpy.zeros(3,'d')):
import numpy
self.__transforms__ = \
{'HSL': {'index': 0, 'next': self._HSL2RGB},
'RGB': {'index': 1, 'next': self._RGB2XYZ, 'prev': self._RGB2HSL},
'XYZ': {'index': 2, 'next': self._XYZ2CIELAB, 'prev': self._XYZ2RGB},
'CIELAB': {'index': 3, 'next': self._CIELAB2MSH, 'prev': self._CIELAB2XYZ},
'MSH': {'index': 4, 'prev': self._MSH2CIELAB},
}
model = model.upper()
if model not in self.__transforms__.keys(): model = 'RGB'
if model == 'RGB' and max(color) > 1.0: # are we RGB255 ?
for i in range(3):
color[i] /= 255.0 # rescale to RGB
if model == 'HSL': # are we HSL ?
if abs(color[0]) > 1.0: color[0] /= 360.0 # with angular hue?
while color[0] >= 1.0: color[0] -= 1.0 # rewind to proper range
while color[0] < 0.0: color[0] += 1.0 # rewind to proper range
self.model = model
self.color = numpy.array(color,'d')
# ------------------------------------------------------------------
def __repr__(self):
return 'Model: %s Color: %s'%(self.model,str(self.color))
# ------------------------------------------------------------------
def __str__(self):
return self.__repr__()
# ------------------------------------------------------------------
def to(self,toModel = 'RGB'):
toModel = toModel.upper()
if toModel not in self.__transforms__.keys(): return
sourcePos = self.__transforms__[self.model]['index']
targetPos = self.__transforms__[toModel]['index']
while sourcePos < targetPos:
self.__transforms__[self.model]['next']()
sourcePos += 1
while sourcePos > targetPos:
self.__transforms__[self.model]['prev']()
sourcePos -= 1
return self
# ------------------------------------------------------------------
def asModel(self,toModel = 'RGB'):
print self.__class__(self.model,self.color)
return self.__class__(self.model,self.color).to(toModel)
# ------------------------------------------------------------------
2013-01-09 00:17:44 +05:30
# convert H(ue) S(aturation) L(uminance) to R(red) G(reen) B(lue)
# with S,L,H,R,G,B running from 0 to 1
# from http://en.wikipedia.org/wiki/HSL_and_HSV
2013-01-09 00:17:44 +05:30
def _HSL2RGB(self):
import numpy
if self.model != 'HSL': return
sextant = int(self.color[0]*6.0)
c = (1.0 - abs(2.0 * self.color[2] - 1.0))*self.color[1]
x = c*(1.0 - abs(sextant%2 - 1.0))
m = self.color[2] - 0.5*c
converted = Color('RGB',numpy.array([
[c+m, x+m, m],
[x+m, c+m, m],
[m, c+m, x+m],
[m, x+m, c+m],
[x+m, m, c+m],
[c+m, m, x+m],
][sextant],'d'))
self.model = converted.model
self.color = converted.color
# ------------------------------------------------------------------
2013-01-09 00:17:44 +05:30
# convert R(ed) G(reen) B(lue) to H(ue) S(aturation) L(uminance)
# with S,L,H,R,G,B running from 0 to 1
# from http://130.113.54.154/~monger/hsl-rgb.html
2013-01-09 00:17:44 +05:30
def _RGB2HSL(self):
import numpy
if self.model != 'RGB': return
HSL = numpy.zeros(3,'d')
maxcolor = self.color.max()
mincolor = self.color.min()
HSL[2] = (maxcolor + mincolor)/2.0
if(mincolor == maxcolor):
HSL[0] = 0.0
HSL[1] = 0.0
else:
if (HSL[2]<0.5):
HSL[1] = (maxcolor - mincolor)/(maxcolor + mincolor)
else:
2013-01-09 00:17:44 +05:30
HSL[1] = (maxcolor - mincolor)/(2.0 -maxcolor -mincolor)
if (maxcolor == self.color[0]):
HSL[0] = 0.0 + (self.color[1] - self.color[2])/(maxcolor - mincolor)
elif (maxcolor == self.color[1]):
HSL[0] = 2.0 + (self.color[2] - self.color[0])/(maxcolor - mincolor)
elif (maxcolor == self.color[2]):
HSL[0] = 4.0 + (self.color[0] - self.color[1])/(maxcolor - mincolor)
HSL[0] = HSL[0]*60.0
if (HSL[0] < 0.0):
HSL[0] = HSL[0] + 360.0
for i in xrange(2):
HSL[i+1] = min(HSL[i+1],1.0)
HSL[i+1] = max(HSL[i+1],0.0)
converted = Color('HSL', HSL)
self.model = converted.model
self.color = converted.color
# ------------------------------------------------------------------
2013-01-09 00:17:44 +05:30
# convert R(ed) G(reen) B(lue) to CIE XYZ
# with all values in the range of 0 to 1
# from http://www.cs.rit.edu/~ncs/color/t_convert.html
2013-01-09 00:17:44 +05:30
def _RGB2XYZ(self):
import numpy
if self.model != 'RGB': return
XYZ = numpy.zeros(3,'d')
RGB_lin = numpy.zeros(3,'d')
for i in xrange(3):
if (self.color[i] > 0.04045):
RGB_lin[i] = ((self.color[i]+0.0555)/1.0555)**2.4
else:
RGB_lin[i] = self.color[i]/12.92
convert = numpy.array([[0.412453,0.357580,0.180423],
[0.212671,0.715160,0.072169],
[0.019334,0.119193,0.950227]])
XYZ = numpy.dot(convert,RGB_lin)
for i in xrange(3):
XYZ[i] = min(XYZ[i],1.0)
XYZ[i] = max(XYZ[i],0.0)
converted = Color('XYZ', XYZ)
self.model = converted.model
self.color = converted.color
# ------------------------------------------------------------------
2013-01-09 00:17:44 +05:30
# convert CIE XYZ R(ed) G(reen) B(lue)
# with all values in the range of 0 to 1
# from http://www.cs.rit.edu/~ncs/color/t_convert.html
2013-01-09 00:17:44 +05:30
def _XYZ2RGB(self):
import numpy
if self.model != 'XYZ': return
RGB = numpy.zeros(3,'d')
RGB_lin = numpy.zeros(3,'d')
convert = numpy.array([[ 3.240479,-1.537150,-0.498535],
[-0.969256, 1.875992, 0.041556],
[ 0.055648,-0.204043, 1.057311]])
RGB_lin = numpy.dot(convert,self.color)
for i in xrange(3):
if (RGB_lin[i] > 0.0031308):
RGB[i] = ((RGB_lin[i])**(1.0/2.4))*1.0555-0.0555
else:
RGB[i] = RGB_lin[i]*12.92
for i in xrange(3):
RGB[i] = min(RGB[i],1.0)
RGB[i] = max(RGB[i],0.0)
maxVal = max(RGB) # clipping colors according to the display gamut
2013-01-09 00:17:44 +05:30
if (maxVal > 1.0):
RGB /= maxVal
converted = Color('RGB', RGB)
self.model = converted.model
self.color = converted.color
# ------------------------------------------------------------------
# convert CIE Lab to CIE XYZ
# with XYZ in the range of 0 to 1
# from http://www.easyrgb.com/index.php?X=MATH&H=07#text7
2013-01-09 00:17:44 +05:30
def _CIELAB2XYZ(self):
import numpy
if self.model != 'CIELAB': return
ref_white = numpy.array([.95047, 1.00000, 1.08883],'d') # Observer = 2, Illuminant = D65
2013-01-09 00:17:44 +05:30
XYZ = numpy.zeros(3,'d')
XYZ[1] = (self.color[0] + 16 ) / 116
XYZ[0] = XYZ[1] + self.color[1] / 500
XYZ[2] = XYZ[1] - self.color[2] / 200
for i in xrange(len(XYZ)):
if (XYZ[i] > 6./29. ):
XYZ[i] = XYZ[i]**3.
else:
2013-01-09 00:17:44 +05:30
XYZ[i] = 108./2523.*(XYZ[i]-4./29.)
converted = Color('XYZ', XYZ*ref_white)
self.model = converted.model
self.color = converted.color
# ------------------------------------------------------------------
# convert CIE XYZ to CIE Lab
# with XYZ in the range of 0 to 1
# from http://en.wikipedia.org/wiki/Lab_color_space, http://www.cs.rit.edu/~ncs/color/t_convert.html
2013-01-09 00:17:44 +05:30
def _XYZ2CIELAB(self):
import numpy
if self.model != 'XYZ': return
ref_white = numpy.array([.95047, 1.00000, 1.08883],'d') # Observer = 2, Illuminant = D65
2013-01-09 00:17:44 +05:30
XYZ = self.color/ref_white
2013-01-09 00:17:44 +05:30
for i in xrange(len(XYZ)):
if (XYZ[i] > 216./24389 ):
XYZ[i] = XYZ[i]**(1.0/3.0)
else:
2013-01-09 00:17:44 +05:30
XYZ[i] = ( 24389./27. * XYZ[i] + 16.0 ) / 116.0
converted = Color('CIELAB', numpy.array([ 116.0 * XYZ[1] - 16.0,
500.0 * (XYZ[0] - XYZ[1]),
200.0 * (XYZ[1] - XYZ[2]) ]))
self.model = converted.model
self.color = converted.color
# ------------------------------------------------------------------
# convert Cie Lab to msh colorspace
# from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls
2013-01-09 00:17:44 +05:30
def _CIELAB2MSH(self):
import numpy, math
if self.model != 'CIELAB': return
Msh = numpy.zeros(3,'d')
Msh[0] = math.sqrt(numpy.dot(self.color,self.color))
if (Msh[0] != 0.0) and (Msh[0] > 0.001):
Msh[1] = math.acos(self.color[0]/Msh[0])
if (self.color[1] != 0.0) and (Msh[1] > 0.001):
Msh[2] = math.atan2(self.color[2],self.color[1])
converted = Color('MSH', Msh)
self.model = converted.model
self.color = converted.color
# ------------------------------------------------------------------
# convert msh colorspace to Cie Lab
# s,h in radians
# from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls
2013-01-09 00:17:44 +05:30
def _MSH2CIELAB(self):
import numpy, math
if self.model != 'MSH': return
Lab = numpy.zeros(3,'d')
Lab[0] = self.color[0] * math.cos(self.color[1])
Lab[1] = self.color[0] * math.sin(self.color[1]) * math.cos(self.color[2])
Lab[2] = self.color[0] * math.sin(self.color[1]) * math.sin(self.color[2])
converted = Color('CIELAB', Lab)
self.model = converted.model
self.color = converted.color
# ------------------------------------------------------------------
class Colormap():
'''
perceptually uniform diverging and sequential colormaps. colormap string exportable in the respective
formats compatible to paraview,gmsh and raw.
'''
2013-01-09 00:17:44 +05:30
__slots__ = [
2013-01-09 00:17:44 +05:30
'left',
'right',
]
# ------------------------------------------------------------------
2013-01-09 00:17:44 +05:30
def __init__(self,
left = Color('RGB',[1,1,1]),
right = Color('RGB',[0,0,0]),
):
2013-01-09 00:17:44 +05:30
if left.__class__.__name__ != 'Color':
left = Color()
if right.__class__.__name__ != 'Color':
right = Color()
self.left = left.asModel('MSH')
2013-01-09 00:17:44 +05:30
self.right = right.asModel('MSH')
# ------------------------------------------------------------------
def export(self,name='uniformPerceptualColorMap',format = 'paraview', steps = 10, crop = [-1,1]):
# export method returns colormap as a string w.r.t the specified format eg, paraview,gmsh
# the colormap can be cropped according to the range of specified values.
# No need to differentiate between sequential and diverging colormaps
# produces sequential colormaps if either of the colors in the Colormap-object is either white or black
# ------------------------------------------------------------------
import copy,numpy, math
def interpolate_color(left,right,interp):
def rad_dif(left,right):
return abs((left.color[2]-right.color[2]))
def adjust_hue(Msh_sat,Msh_unsat): # if saturation of one of the two colors is too less than the other, hue of the less
# saturated color is adjusted.
M_unsat = Msh_unsat.color[0]
if ( Msh_sat.color[0] >= (M_unsat-0.1) ):
return Msh_sat.color[2]
else:
hSpin = Msh_sat.color[1]*math.sqrt((M_unsat)**2.0-(Msh_sat.color[0])**2)/(Msh_sat.color[0]*math.sin(Msh_sat.color[1]))
if Msh_sat.color[2] > - math.pi/3.0:
return Msh_sat.color[2] + hSpin
else:
return Msh_sat.color[2] - hSpin
Msh1 = copySelf.left
Msh2 = copySelf.right
Msh_mid = [0.0,0.0,0.0]
if ((Msh1.color[1] > 0.05 and Msh2.color[1] > 0.05) and rad_dif(Msh1,Msh2) > math.pi/3.0):
Msh_mid[0] = max(Msh1.color[0],Msh2.color[0],88.0)
if interp < 0.5:
Msh2.color[0] = Msh_mid[0]
Msh2.color[1] = 0.0
Msh2.color[2] = 0.0
interp = 2.0*interp
else:
Msh1.color[0] = Msh_mid[0]
Msh1.color[1] = 0.0
Msh1.color[2] = 0.0
interp = 2.0*interp - 1.0
if (Msh1.color[1] < 0.05) and (Msh2.color[1] > 0.05):
Msh1.color[2] = adjust_hue(Msh2,Msh1)
elif (Msh2.color[1] < 0.05) and (Msh1.color[1] > 0.05):
Msh2.color[2] = adjust_hue(Msh1,Msh2)
for i in range(3):
Msh_mid[i] = (1.0-interp)*Msh1.color[i] + interp* Msh2.color[i]
return Color('MSH',Msh_mid).to()
def write_paraview(RGB_vector):
colormap ='<ColorMap name="'+ str(name)+ '" space="RGB">\n'
for i in range(len(RGB_vector)):
colormap+='<Point x="'+str(i)+'" o="1" r="'+str(RGB_vector[i][0])+'" g="'+str(RGB_vector[i][1])+'" b="'+str(RGB_vector[i][2])+'"/>\n'
colormap+='</ColorMap>'
return colormap
def write_gmsh(RGB_vector):
colormap = 'View.ColorTable = {\n'
for i in range(len(RGB_vector)-1):
colormap+='{'+str((RGB_vector[i][0])*255.0)+','+str((RGB_vector[i][1])*255.0)+','+str((RGB_vector[i][2])*255.0)+'},\n'
colormap+='{'+str((RGB_vector[-1][0])*255.0)+','+str((RGB_vector[-1][1])*255.0)+','+str((RGB_vector[-1][2])*255.0)+'}}\n'
return colormap
def write_raw(RGB_vector):
colormap = ('ColorMap name = ' + str(name)+'\n')
for i in range(len(RGB_vector)):
colormap+=str(RGB_vector[i][0])+'\t'+str(RGB_vector[i][1])+'\t'+str(RGB_vector[i][2])+'\n'
return colormap
def croppedVector(RGB_vector):
zeroPos = int((len(RGB_vector)-1)/2)
leftPos,rightPos = crop
maxValue = max(abs(leftPos),abs(rightPos))
minValue = min(abs(leftPos),abs(rightPos))
perUnit = (len(RGB_vector)-1)/(2*maxValue)
if abs(leftPos) > abs(rightPos):
del RGB_vector[((zeroPos + int(perUnit*minValue))+1):]
if abs(leftPos) < abs(rightPos):
del RGB_vector[:(zeroPos - int(perUnit*minValue))]
return RGB_vector
interpolationVector = [] # a list of equally spaced values(interpolator) between 0 and 1
RGB_Matrix = []
for i in range(steps+1): interpolationVector.append(float(i)/steps)
for i in interpolationVector:
copySelf = copy.deepcopy(self)
color = interpolate_color(copySelf.left,copySelf.right,i)
RGB_Matrix.append(color.color)
RGB_Matrix_cropped = croppedVector(RGB_Matrix)
if format.lower() == 'paraview':
colormap = write_paraview(RGB_Matrix_cropped)
if format.lower() == 'gmsh':
colormap = write_gmsh(RGB_Matrix_cropped)
if format.lower() == 'raw':
colormap = write_raw(RGB_Matrix_cropped)
colormapStr = str(colormap)
return colormapStr