put colormap related functions into library, renamed and added scripts for creation of colormaps
This commit is contained in:
parent
6ab79d5593
commit
820b8eb2c1
|
@ -4,6 +4,7 @@ import sys
|
|||
from .environment import Environment # only one class
|
||||
from .asciitable import ASCIItable # only one class
|
||||
from .config import Material # will be extended to debug and numerics
|
||||
from .colormaps import Colormaps # only one class
|
||||
#from .block import Block # only one class
|
||||
from .result import Result # one class with subclasses
|
||||
from .geometry import Geometry # one class with subclasses
|
||||
|
|
|
@ -0,0 +1,233 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
class Colormaps():
|
||||
'''
|
||||
Funtionality to create colormaps
|
||||
'''
|
||||
|
||||
# from http://code.activestate.com/recipes/121574-matrix-vector-multiplication/
|
||||
def matmult(self, m, v):
|
||||
nrows = len(m)
|
||||
w = [None] * nrows
|
||||
for row in range(nrows):
|
||||
w[row] = reduce(lambda x,y: x+y, map(lambda x,y: x*y, m[row], v))
|
||||
return w
|
||||
|
||||
# convert H(ue) S(aturation) L(uminance) to R(ot) G(elb) B(lau)
|
||||
# with S,L,R,G,B running from 0 to 1, H running from 0 to 360
|
||||
# from http://en.wikipedia.org/wiki/HSL_and_HSV
|
||||
def HSL2RGB(self,HSL):
|
||||
RGB = [0.0,0.0,0.0]
|
||||
H_strich = HSL[0]/60.0
|
||||
c = (1.0- abs(2.0 * HSL[2] - 1.0))*HSL[1]
|
||||
x = c*(1.0- abs(H_strich%2-1.0))
|
||||
m = HSL[2] -.5*c
|
||||
if (0.0 <= H_strich)and(H_strich<1.0):
|
||||
RGB[0] = c + m
|
||||
RGB[1] = x + m
|
||||
RGB[2] = 0.0 + m
|
||||
elif (1.0 <= H_strich)and(H_strich<2.0):
|
||||
RGB[0] = x + m
|
||||
RGB[1] = c + m
|
||||
RGB[2] = 0.0 + m
|
||||
elif (2.0 <= H_strich)and(H_strich<3.0):
|
||||
RGB[0] = 0.0 + m
|
||||
RGB[1] = c + m
|
||||
RGB[2] = x + m
|
||||
elif (3.0 <= H_strich)and(H_strich<4.0):
|
||||
RGB[0] = 0.0 + m
|
||||
RGB[1] = x + m
|
||||
RGB[2] = c + m
|
||||
elif (4.0 <= H_strich)and(H_strich<5.0):
|
||||
RGB[0] = x + m
|
||||
RGB[1] = 0.0 + m
|
||||
RGB[2] = c + m
|
||||
elif (5.0 <= H_strich)and(H_strich<=6.0):
|
||||
RGB[0] = c + m
|
||||
RGB[1] = 0.0 + m
|
||||
RGB[2] = x + m
|
||||
for i in range(3):
|
||||
RGB[i] = min(RGB[i],1.0)
|
||||
RGB[i] = max(RGB[i],0.0)
|
||||
return RGB
|
||||
|
||||
# convert R(ot) G(elb) B(lau) to H(ue) S(aturation) L(uminance)
|
||||
# with S,L,R,G,B running from 0 to 1, H running from 0 to 360
|
||||
# from http://130.113.54.154/~monger/hsl-rgb.html
|
||||
def RGB2HSL(self,RGB):
|
||||
HSL = [0.0,0.0,0.0]
|
||||
maxcolor = max(RGB)
|
||||
mincolor = min(RGB)
|
||||
HSL[2] = (maxcolor + mincolor)/2.0
|
||||
if(mincolor == maxcolor):
|
||||
HSL[0] = 0.0
|
||||
HSL[1] = 0.0
|
||||
else:
|
||||
if (HSL[2]<0.5):
|
||||
HSL[1] = (maxcolor - mincolor)/(maxcolor + mincolor)
|
||||
else:
|
||||
HSL[1] = (maxcolor - mincolor)/(2.0 -maxcolor -mincolor)
|
||||
if (maxcolor == RGB[0]):
|
||||
HSL[0] = 0.0 + (RGB[1] - RGB[2])/(maxcolor - mincolor)
|
||||
elif (maxcolor == RGB[1]):
|
||||
HSL[0] = 2.0 + (RGB[2] - RGB[0])/(maxcolor - mincolor)
|
||||
elif (maxcolor == RGB[2]):
|
||||
HSL[0] = 4.0 + (RGB[0] - RGB[1])/(maxcolor - mincolor)
|
||||
HSL[0] = HSL[0]*60.0
|
||||
if (HSL[0] < 0.0):
|
||||
HSL[0] = HSL[0] + 360.0
|
||||
for i in range(2):
|
||||
HSL[i+1] = min(HSL[i+1],1.0)
|
||||
HSL[i+1] = max(HSL[i+1],0.0)
|
||||
return HSL
|
||||
|
||||
# convert R(ot) G(elb) B(lau) to CIE XYZ
|
||||
# with all values in the range of 0 to 1
|
||||
# from http://www.cs.rit.edu/~ncs/color/t_convert.html
|
||||
def RGB2XYZ(self,RGB):
|
||||
XYZ = [0.0,0.0,0.0]
|
||||
RGB_lin = [0.0,0.0,0.0]
|
||||
for i in range(3):
|
||||
if (RGB[i] > 0.04045):
|
||||
RGB_lin[i] = ((RGB[i]+0.0555)/1.0555)**2.4
|
||||
else:
|
||||
RGB_lin[i] = RGB[i]/12.92
|
||||
convert =[[0.412453,0.357580,0.180423],[0.212671,0.715160,0.072169],[0.019334,0.119193,0.950227]]
|
||||
XYZ = self.matmult(convert,RGB_lin)
|
||||
for i in range(3):
|
||||
XYZ[i] = min(XYZ[i],1.0)
|
||||
XYZ[i] = max(XYZ[i],0.0)
|
||||
return XYZ
|
||||
|
||||
# convert CIE XYZ R(ot) G(elb) B(lau)
|
||||
# with all values in the range of 0 to 1
|
||||
# from http://www.cs.rit.edu/~ncs/color/t_convert.html
|
||||
def XYZ2RGB(self,XYZ):
|
||||
RGB_lin = [0.0,0.0,0.0]
|
||||
RGB = [0.0,0.0,0.0]
|
||||
convert =[[3.240479,-1.537150,-0.498535],[-0.969256,1.875992,0.041556],[0.055648,-0.204043,1.057311]]
|
||||
RGB_lin = self.matmult(convert,XYZ)
|
||||
for i in range(3):
|
||||
if (RGB_lin[i] > 0.0031308):
|
||||
RGB[i] = ((RGB_lin[i])**(1.0/2.4))*1.0555-0.0555
|
||||
else:
|
||||
RGB[i] = RGB_lin[i]*12.92
|
||||
for i in range(3):
|
||||
RGB[i] = min(RGB[i],1.0)
|
||||
RGB[i] = max(RGB[i],0.0)
|
||||
|
||||
maxVal = RGB[0] # clipping clolors according to the display gamut
|
||||
if (maxVal < RGB[1]): maxVal = RGB[1]
|
||||
if (maxVal < RGB[2]): maxVal = RGB[2]
|
||||
if (maxVal > 1.0):
|
||||
RGB[0] = RGB[0]/maxVal
|
||||
RGB[1] = RGB[1]/maxVal
|
||||
RGB[2] = RGB[2]/maxVal
|
||||
|
||||
return RGB
|
||||
|
||||
# convert CIE Lab to CIE XYZ
|
||||
# with XYZ in the range of 0 to 1
|
||||
# from http://www.easyrgb.com/index.php?X=MATH&H=07#text7
|
||||
def CIELab2XYZ(self,Lab,white):
|
||||
# ref_white_XYZ = [.95047, 1.00000, 1.08883] # Observer = 2, Illuminant = D65
|
||||
XYZ = [0.0,0.0,0.0]
|
||||
var_Y = ( Lab[0] + 16 ) / 116
|
||||
var_X = Lab[1] / 500 + var_Y
|
||||
var_Z = var_Y - Lab[2] / 200
|
||||
|
||||
if ( var_Y**3 > 0.008856 ):
|
||||
var_Y = var_Y**3
|
||||
else:
|
||||
var_Y = ( var_Y-16/116) / 7.787
|
||||
|
||||
if ( var_X**3 > 0.008856 ):
|
||||
var_X = var_X**3
|
||||
else:
|
||||
var_X = ( var_X-16/116) / 7.787
|
||||
|
||||
if ( var_Z**3 > 0.008856 ):
|
||||
var_Z = var_Z**3
|
||||
else:
|
||||
var_Z = ( var_Z-16/116) / 7.787
|
||||
|
||||
XYZ[0] = white[0]*var_X
|
||||
XYZ[1] = white[1]*var_Y
|
||||
XYZ[2] = white[2]*var_Z
|
||||
|
||||
return XYZ
|
||||
|
||||
# convert CIE XYZ to CIE Lab
|
||||
# with XYZ in the range of 0 to 1
|
||||
# from http://en.wikipedia.org/wiki/Lab_color_space, http://www.cs.rit.edu/~ncs/color/t_convert.html
|
||||
def XYZ2CIELab(self,XYZ,white):
|
||||
# ref_white_XYZ = [.95047, 1.00000, 1.08883] # Observer = 2, Illuminant = D65
|
||||
Lab = [0.0,0.0,0.0]
|
||||
var_X = XYZ[0]/white[0]
|
||||
var_Y = XYZ[1]/white[1]
|
||||
var_Z = XYZ[2]/white[2]
|
||||
|
||||
if ( var_X > 0.008856 ):
|
||||
var_X = var_X**(1.0/3.0)
|
||||
else:
|
||||
var_X = ( 7.787 * var_X ) + (16.0/116.0)
|
||||
|
||||
if ( var_Y > 0.008856 ):
|
||||
var_Y = var_Y**(1.0/3.0)
|
||||
else:
|
||||
var_Y = ( 7.787 * var_Y ) + (16.0/116.0)
|
||||
|
||||
if ( var_Z > 0.008856 ):
|
||||
var_Z = var_Z**(1.0/3.0)
|
||||
else:
|
||||
var_Z = (7.787*var_Z)+(16.0/116.0)
|
||||
|
||||
Lab[0] = (116.0 * var_Y) - 16.0
|
||||
Lab[1] = 500.0 * (var_X - var_Y)
|
||||
Lab[2] = 200.0 * (var_Y - var_Z)
|
||||
return Lab
|
||||
|
||||
# convert Cie Lab to msh colorspace
|
||||
# from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls
|
||||
def CIELab2Msh(self,Lab):
|
||||
import math
|
||||
Msh = [0.0,0.0,0.0]
|
||||
Msh[0] = math.sqrt(Lab[0]**2.0 + Lab[1]**2.0 + Lab[2]**2.0)
|
||||
if (Msh[0] != 0.0) and (Msh[0] > 0.001):
|
||||
Msh[1] = math.acos(Lab[0]/Msh[0])
|
||||
if (Lab[1] != 0.0) and (Msh[1] > 0.001):
|
||||
Msh[2] = math.atan2(Lab[2],Lab[1])
|
||||
return Msh
|
||||
|
||||
# convert msh colorspace to Cie Lab
|
||||
# from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls
|
||||
def Msh2CIELab(self,Msh):
|
||||
import math
|
||||
Lab = [0.0,0.0,0.0]
|
||||
Lab[0] = Msh[0] * math.cos(Msh[1])
|
||||
Lab[1] = Msh[0] * math.sin(Msh[1]) * math.cos(Msh[2])
|
||||
Lab[2] = Msh[0] * math.sin(Msh[1]) * math.sin(Msh[2])
|
||||
return Lab
|
||||
|
||||
def write_gsmh(self,RGB_vector,name):
|
||||
colormap = open(str(name) + '.map',"w")
|
||||
colormap.write('View.ColorTable = {\n')
|
||||
for i in range(len(RGB_vector)-1):
|
||||
colormap.write('{'+str((RGB_vector[0][i])*255.0)+','+str((RGB_vector[0][i])*255.0)+','+str((RGB_vector[0][i])*255.0)+'},\n')
|
||||
colormap.write('{'+str((RGB_vector[0][-1])*255.0)+','+str((RGB_vector[0][-1])*255.0)+','+str((RGB_vector[0][-1])*255.0)+'}}')
|
||||
file.close(colormap)
|
||||
|
||||
def write_paraview(self,RGB_vector,name):
|
||||
colormap = open(str(name) + '.xml',"w")
|
||||
colormap.write('<ColorMap name="'+ str(name)+ '" space="RGB">\n')
|
||||
for i in range(len(RGB_vector[0])):
|
||||
colormap.write('<Point x="'+str(i)+'" o="1" r="'+str(RGB_vector[0][i])+'" g="'+str(RGB_vector[1][i])+'" b="'+str(RGB_vector[2][i])+'"/>\n')
|
||||
colormap.write('</ColorMap>')
|
||||
file.close(colormap)
|
||||
|
||||
def write_raw(self,RGB_vector,name):
|
||||
colormap = open(str(name) + '.colormap',"w")
|
||||
colormap.write('ColorMap name = ' + str(name)+'\n')
|
||||
for i in range(len(RGB_vector)):
|
||||
colormap.write(str(RGB_vector[0][i])+'\t'+str(RGB_vector[1][i])+'\t'+str(RGB_vector[2][i])+'\n')
|
||||
file.close(colormap)
|
20
processing/post/diverging_colormaps.py → processing/post/colormap_diverging.py
Normal file → Executable file
20
processing/post/diverging_colormaps.py → processing/post/colormap_diverging.py
Normal file → Executable file
|
@ -1,7 +1,7 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
import math, convert_colormodels, colormap_io, string, sys
|
||||
|
||||
import math, string, sys
|
||||
from damask import Colormaps
|
||||
from optparse import OptionParser, Option
|
||||
|
||||
# -----------------------------
|
||||
|
@ -32,7 +32,7 @@ parser = OptionParser(option_class=extendableOption, usage='%prog options [file[
|
|||
Add column(s) containing Cauchy stress based on given column(s) of
|
||||
deformation gradient and first Piola--Kirchhoff stress.
|
||||
|
||||
""" + string.replace('$Id: addCauchy.py 1278 2012-02-07 13:09:10Z MPIE\c.kords $','\n','\\n')
|
||||
""" + string.replace('$Id$','\n','\\n')
|
||||
)
|
||||
|
||||
parser.add_option('-l','--left', dest='left', type='float', nargs=3, \
|
||||
|
@ -61,10 +61,11 @@ if filenames == []:
|
|||
|
||||
# -----------------------------------------------------------------------------------------------------
|
||||
|
||||
myColorMap = Colormaps()
|
||||
|
||||
def rad_dif(Msh1,Msh2,white):
|
||||
HSL1 = convert_colormodels.RGB2HSL(convert_colormodels.XYZ2RGB(convert_colormodels.CIELab2XYZ(convert_colormodels.Msh2CIELab(Msh1),white)))
|
||||
HSL2 = convert_colormodels.RGB2HSL(convert_colormodels.XYZ2RGB(convert_colormodels.CIELab2XYZ(convert_colormodels.Msh2CIELab(Msh2),white)))
|
||||
HSL1 = myColorMap.RGB2HSL(myColorMap.XYZ2RGB(myColorMap.CIELab2XYZ(myColorMap.Msh2CIELab(Msh1),white)))
|
||||
HSL2 = myColorMap.RGB2HSL(myColorMap.XYZ2RGB(myColorMap.CIELab2XYZ(myColorMap.Msh2CIELab(Msh2),white)))
|
||||
return abs(HSL1[0]*math.pi/180.0-HSL2[0]*math.pi/180.0)
|
||||
|
||||
def adjust_hue(Msh_sat,M_unsat):
|
||||
|
@ -79,8 +80,8 @@ def adjust_hue(Msh_sat,M_unsat):
|
|||
|
||||
|
||||
def interpolate_color(RGB1,RGB2,white,interp):
|
||||
Msh1 = convert_colormodels.CIELab2Msh(convert_colormodels.XYZ2CIELab(convert_colormodels.RGB2XYZ(RGB1),white))
|
||||
Msh2 = convert_colormodels.CIELab2Msh(convert_colormodels.XYZ2CIELab(convert_colormodels.RGB2XYZ(RGB2),white))
|
||||
Msh1 = myColorMap.CIELab2Msh(myColorMap.XYZ2CIELab(myColorMap.RGB2XYZ(RGB1),white))
|
||||
Msh2 = myColorMap.CIELab2Msh(myColorMap.XYZ2CIELab(myColorMap.RGB2XYZ(RGB2),white))
|
||||
Msh_mid = [0.0,0.0,0.0]
|
||||
if ((Msh1[1] > 0.05 and Msh2[1] > 0.05) and rad_dif(Msh1,Msh2,white) > math.pi/3.0):
|
||||
Msh_mid[0] = max(Msh1[0],Msh2[0],88.0)
|
||||
|
@ -100,7 +101,7 @@ def interpolate_color(RGB1,RGB2,white,interp):
|
|||
Msh2[2] = adjust_hue(Msh1,Msh2[0])
|
||||
for i in range(3):
|
||||
Msh_mid[i] = (1.0-interp)*Msh1[i] + interp* Msh2[i]
|
||||
return convert_colormodels.XYZ2RGB(convert_colormodels.CIELab2XYZ(convert_colormodels.Msh2CIELab(Msh_mid),white))
|
||||
return myColorMap.XYZ2RGB(myColorMap.CIELab2XYZ(myColorMap.Msh2CIELab(Msh_mid),white))
|
||||
|
||||
white = [0.950456, 1.0, 1.088754]
|
||||
interpolatorArray = []
|
||||
|
@ -114,8 +115,9 @@ for i in interpolatorArray:
|
|||
rMatrix.append(color[0])
|
||||
gMatrix.append(color[1])
|
||||
bMatrix.append(color[2])
|
||||
|
||||
colorMatrix = [rMatrix,gMatrix,bMatrix]
|
||||
|
||||
if options.outtype.lower() == 'paraview':
|
||||
colormap_io.write_paraview(colorMatrix,filenames[0])
|
||||
myColorMap.write_paraview(colorMatrix,filenames[0])
|
||||
|
|
@ -1,34 +0,0 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- coding: iso-8859-1 -*-
|
||||
|
||||
def write_gsmh(RGB_vector,name):
|
||||
colormap = open(str(name) + '.map',"w")
|
||||
colormap.write('View.ColorTable = {\n')
|
||||
for i in range(len(RGB_vector)-1):
|
||||
colormap.write('{'+str((RGB_vector[0][i])*255.0)+','+str((RGB_vector[0][i])*255.0)+','+str((RGB_vector[0][i])*255.0)+'},\n')
|
||||
colormap.write('{'+str((RGB_vector[0][-1])*255.0)+','+str((RGB_vector[0][-1])*255.0)+','+str((RGB_vector[0][-1])*255.0)+'}}')
|
||||
file.close(colormap)
|
||||
|
||||
def write_paraview(RGB_vector,name):
|
||||
colormap = open(str(name) + '.xml',"w")
|
||||
colormap.write('<ColorMap name="'+ str(name)+ '" space="RGB">\n')
|
||||
for i in range(len(RGB_vector[0])):
|
||||
colormap.write('<Point x="'+str(i)+'" o="1" r="'+str(RGB_vector[0][i])+'" g="'+str(RGB_vector[1][i])+'" b="'+str(RGB_vector[2][i])+'"/>\n')
|
||||
colormap.write('</ColorMap>')
|
||||
file.close(colormap)
|
||||
|
||||
def write_paraview2(RGB_vector,name):
|
||||
colormap = open(str(name) + '.xml',"w")
|
||||
colormap.write('<ColorMap name = "'+ str(name)+ '" space = "RGB">\n')
|
||||
for i in range(len(RGB_vector)/3):
|
||||
colormap.write('<Point x="'+str(i)+'" o="1" r="'+str(RGB_vector[i*3])+'" g="'+str(RGB_vector[i*3+1])+'" b="'+str(RGB_vector[i*3+2])+'"/>\n')
|
||||
colormap.write('</ColorMap>')
|
||||
file.close(colormap)
|
||||
|
||||
def write_raw(RGB_vector,name):
|
||||
colormap = open(str(name) + '.colormap',"w")
|
||||
colormap.write('ColorMap name = ' + str(name)+'\n')
|
||||
for i in range(len(RGB_vector)):
|
||||
colormap.write(str(RGB_vector[0][i])+'\t'+str(RGB_vector[1][i])+'\t'+str(RGB_vector[2][i])+'\n')
|
||||
file.close(colormap)
|
||||
|
|
@ -0,0 +1,55 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
import math, convert_colormodels, colormap_io, string, sys
|
||||
|
||||
|
||||
def adjust_hue(Msh_sat,M_unsat):
|
||||
if ( Msh_sat[0] >= (M_unsat-0.1) ):
|
||||
return Msh_sat[2]
|
||||
else:
|
||||
hSpin = Msh_sat[1]*math.sqrt((M_unsat)**2.0-(Msh_sat[0])**2)/(Msh_sat[0]*math.sin(Msh_sat[1]))
|
||||
if Msh_sat[2] > - math.pi/3.0:
|
||||
return Msh_sat[2] + hSpin
|
||||
else:
|
||||
return Msh_sat[2] - hSpin
|
||||
|
||||
|
||||
def interpolate_color(RGB1,white,interp):
|
||||
Msh1 = convert_colormodels.CIELab2Msh(convert_colormodels.XYZ2CIELab(convert_colormodels.RGB2XYZ(RGB1),white))
|
||||
Msh2 = [0.0,0.0,0.0]
|
||||
Msh_mid = [0.0,0.0,0.0]
|
||||
if ((Msh1[1] > 0.05 and Msh2[1] > 0.05):
|
||||
Msh_mid[0] = max(Msh1[0],Msh2[0],88.0)
|
||||
if interp <=1:
|
||||
Msh2[0] = Msh_mid[0]
|
||||
Msh2[1] = 0.0
|
||||
Msh2[2] = 0.0
|
||||
interp = 2.0*interp
|
||||
else:
|
||||
print 'Interpolation factor value must be within 0 and 1!'
|
||||
if (Msh1[1] < 0.05):
|
||||
Msh1[2] = adjust_hue(Msh2,Msh1[0])
|
||||
else:
|
||||
print 'The Saturation value of the given color is aggreable!'
|
||||
for i in range(3):
|
||||
Msh_mid[i] = (1.0-interp)*Msh1[i] + interp* Msh2[i]
|
||||
return convert_colormodels.XYZ2RGB(convert_colormodels.CIELab2XYZ(convert_colormodels.Msh2CIELab(Msh_mid),white))
|
||||
|
||||
|
||||
ex1 = [46/255 139/255 87/255]
|
||||
|
||||
interpolatorArray = []
|
||||
for i in range(options.steps+1): interpolatorArray.append(float(i)/options.steps)
|
||||
rMatrix = []
|
||||
gMatrix = []
|
||||
bMatrix = []
|
||||
for i in interpolatorArray:
|
||||
step_no = str(interpolatorArray.index(i))
|
||||
color = interpolate_color(options.left,options.right,white,i)
|
||||
rMatrix.append(color[0])
|
||||
gMatrix.append(color[1])
|
||||
bMatrix.append(color[2])
|
||||
print 'step no: %s'%step_no
|
||||
print color[0], color[1], color[2]
|
||||
|
||||
colorMatrix = [rMatrix,gMatrix,bMatrix]
|
|
@ -1,206 +0,0 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- coding: iso-8859-1 -*-
|
||||
|
||||
import math
|
||||
|
||||
# from http://code.activestate.com/recipes/121574-matrix-vector-multiplication/
|
||||
def matmult(m, v):
|
||||
nrows = len(m)
|
||||
w = [None] * nrows
|
||||
for row in range(nrows):
|
||||
w[row] = reduce(lambda x,y: x+y, map(lambda x,y: x*y, m[row], v))
|
||||
return w
|
||||
|
||||
# convert H(ue) S(aturation) L(uminance) to R(ot) G(elb) B(lau)
|
||||
# with S,L,R,G,B running from 0 to 1, H running from 0 to 360
|
||||
# from http://en.wikipedia.org/wiki/HSL_and_HSV
|
||||
def HSL2RGB(HSL):
|
||||
RGB = [0.0,0.0,0.0]
|
||||
H_strich = HSL[0]/60.0
|
||||
c = (1.0- abs(2.0 * HSL[2] - 1.0))*HSL[1]
|
||||
x = c*(1.0- abs(H_strich%2-1.0))
|
||||
m = HSL[2] -.5*c
|
||||
if (0.0 <= H_strich)and(H_strich<1.0):
|
||||
RGB[0] = c + m
|
||||
RGB[1] = x + m
|
||||
RGB[2] = 0.0 + m
|
||||
elif (1.0 <= H_strich)and(H_strich<2.0):
|
||||
RGB[0] = x + m
|
||||
RGB[1] = c + m
|
||||
RGB[2] = 0.0 + m
|
||||
elif (2.0 <= H_strich)and(H_strich<3.0):
|
||||
RGB[0] = 0.0 + m
|
||||
RGB[1] = c + m
|
||||
RGB[2] = x + m
|
||||
elif (3.0 <= H_strich)and(H_strich<4.0):
|
||||
RGB[0] = 0.0 + m
|
||||
RGB[1] = x + m
|
||||
RGB[2] = c + m
|
||||
elif (4.0 <= H_strich)and(H_strich<5.0):
|
||||
RGB[0] = x + m
|
||||
RGB[1] = 0.0 + m
|
||||
RGB[2] = c + m
|
||||
elif (5.0 <= H_strich)and(H_strich<=6.0):
|
||||
RGB[0] = c + m
|
||||
RGB[1] = 0.0 + m
|
||||
RGB[2] = x + m
|
||||
for i in range(3):
|
||||
RGB[i] = min(RGB[i],1.0)
|
||||
RGB[i] = max(RGB[i],0.0)
|
||||
return RGB
|
||||
|
||||
# convert R(ot) G(elb) B(lau) to H(ue) S(aturation) L(uminance)
|
||||
# with S,L,R,G,B running from 0 to 1, H running from 0 to 360
|
||||
# from http://130.113.54.154/~monger/hsl-rgb.html
|
||||
def RGB2HSL(RGB):
|
||||
HSL = [0.0,0.0,0.0]
|
||||
maxcolor = max(RGB)
|
||||
mincolor = min(RGB)
|
||||
HSL[2] = (maxcolor + mincolor)/2.0
|
||||
if(mincolor == maxcolor):
|
||||
HSL[0] = 0.0
|
||||
HSL[1] = 0.0
|
||||
else:
|
||||
if (HSL[2]<0.5):
|
||||
HSL[1] = (maxcolor - mincolor)/(maxcolor + mincolor)
|
||||
else:
|
||||
HSL[1] = (maxcolor - mincolor)/(2.0 -maxcolor -mincolor)
|
||||
if (maxcolor == RGB[0]):
|
||||
HSL[0] = 0.0 + (RGB[1] - RGB[2])/(maxcolor - mincolor)
|
||||
elif (maxcolor == RGB[1]):
|
||||
HSL[0] = 2.0 + (RGB[2] - RGB[0])/(maxcolor - mincolor)
|
||||
elif (maxcolor == RGB[2]):
|
||||
HSL[0] = 4.0 + (RGB[0] - RGB[1])/(maxcolor - mincolor)
|
||||
HSL[0] = HSL[0]*60.0
|
||||
if (HSL[0] < 0.0):
|
||||
HSL[0] = HSL[0] + 360.0
|
||||
for i in range(2):
|
||||
HSL[i+1] = min(HSL[i+1],1.0)
|
||||
HSL[i+1] = max(HSL[i+1],0.0)
|
||||
return HSL
|
||||
|
||||
# convert R(ot) G(elb) B(lau) to CIE XYZ
|
||||
# with all values in the range of 0 to 1
|
||||
# from http://www.cs.rit.edu/~ncs/color/t_convert.html
|
||||
def RGB2XYZ(RGB):
|
||||
XYZ = [0.0,0.0,0.0]
|
||||
RGB_lin = [0.0,0.0,0.0]
|
||||
for i in range(3):
|
||||
if (RGB[i] > 0.04045):
|
||||
RGB_lin[i] = ((RGB[i]+0.0555)/1.0555)**2.4
|
||||
else:
|
||||
RGB_lin[i] = RGB[i]/12.92
|
||||
convert =[[0.412453,0.357580,0.180423],[0.212671,0.715160,0.072169],[0.019334,0.119193,0.950227]]
|
||||
XYZ = matmult(convert,RGB_lin)
|
||||
for i in range(3):
|
||||
XYZ[i] = min(XYZ[i],1.0)
|
||||
XYZ[i] = max(XYZ[i],0.0)
|
||||
return XYZ
|
||||
|
||||
# convert CIE XYZ R(ot) G(elb) B(lau)
|
||||
# with all values in the range of 0 to 1
|
||||
# from http://www.cs.rit.edu/~ncs/color/t_convert.html
|
||||
def XYZ2RGB(XYZ):
|
||||
RGB_lin = [0.0,0.0,0.0]
|
||||
RGB = [0.0,0.0,0.0]
|
||||
convert =[[3.240479,-1.537150,-0.498535],[-0.969256,1.875992,0.041556],[0.055648,-0.204043,1.057311]]
|
||||
RGB_lin = matmult(convert,XYZ)
|
||||
for i in range(3):
|
||||
if (RGB_lin[i] > 0.0031308):
|
||||
RGB[i] = ((RGB_lin[i])**(1.0/2.4))*1.0555-0.0555
|
||||
else:
|
||||
RGB[i] = RGB_lin[i]*12.92
|
||||
for i in range(3):
|
||||
RGB[i] = min(RGB[i],1.0)
|
||||
RGB[i] = max(RGB[i],0.0)
|
||||
|
||||
maxVal = RGB[0]
|
||||
if (maxVal < RGB[1]): maxVal = RGB[1]
|
||||
if (maxVal < RGB[2]): maxVal = RGB[2]
|
||||
if (maxVal > 1.0):
|
||||
RGB[0] = RGB[0]/maxVal
|
||||
RGB[1] = RGB[1]/maxVal
|
||||
RGB[2] = RGB[2]/maxVal
|
||||
|
||||
return RGB
|
||||
|
||||
# convert CIE Lab to CIE XYZ
|
||||
# with XYZ in the range of 0 to 1
|
||||
# from http://www.easyrgb.com/index.php?X=MATH&H=07#text7
|
||||
def CIELab2XYZ(Lab,white):
|
||||
# ref_white_XYZ = [.95047, 1.00000, 1.08883] # Observer= 2°, Illuminant= D65
|
||||
XYZ = [0.0,0.0,0.0]
|
||||
var_Y = ( Lab[0] + 16 ) / 116
|
||||
var_X = Lab[1] / 500 + var_Y
|
||||
var_Z = var_Y - Lab[2] / 200
|
||||
|
||||
if ( var_Y**3 > 0.008856 ):
|
||||
var_Y = var_Y**3
|
||||
else:
|
||||
var_Y = ( var_Y-16/116) / 7.787
|
||||
|
||||
if ( var_X**3 > 0.008856 ):
|
||||
var_X = var_X**3
|
||||
else:
|
||||
var_X = ( var_X-16/116) / 7.787
|
||||
|
||||
if ( var_Z**3 > 0.008856 ):
|
||||
var_Z = var_Z**3
|
||||
else:
|
||||
var_Z = ( var_Z-16/116) / 7.787
|
||||
|
||||
XYZ[0] = white[0]*var_X
|
||||
XYZ[1] = white[1]*var_Y
|
||||
XYZ[2] = white[2]*var_Z
|
||||
|
||||
return XYZ
|
||||
|
||||
# convert CIE XYZ to CIE Lab
|
||||
# with XYZ in the range of 0 to 1
|
||||
# from http://en.wikipedia.org/wiki/Lab_color_space, http://www.cs.rit.edu/~ncs/color/t_convert.html
|
||||
def XYZ2CIELab(XYZ,white):
|
||||
# ref_white_XYZ = [.95047, 1.00000, 1.08883] # Observer= 2°, Illuminant= D65
|
||||
Lab = [0.0,0.0,0.0]
|
||||
var_X = XYZ[0]/white[0]
|
||||
var_Y = XYZ[1]/white[1]
|
||||
var_Z = XYZ[2]/white[2]
|
||||
|
||||
if ( var_X > 0.008856 ):
|
||||
var_X = var_X**(1.0/3.0)
|
||||
else:
|
||||
var_X = ( 7.787 * var_X ) + (16.0/116.0)
|
||||
|
||||
if ( var_Y > 0.008856 ):
|
||||
var_Y = var_Y**(1.0/3.0)
|
||||
else:
|
||||
var_Y = ( 7.787 * var_Y ) + (16.0/116.0)
|
||||
|
||||
if ( var_Z > 0.008856 ):
|
||||
var_Z = var_Z**(1.0/3.0)
|
||||
else:
|
||||
var_Z = (7.787*var_Z)+(16.0/116.0)
|
||||
|
||||
Lab[0] = (116.0 * var_Y) - 16.0
|
||||
Lab[1] = 500.0 * (var_X - var_Y)
|
||||
Lab[2] = 200.0 * (var_Y - var_Z)
|
||||
return Lab
|
||||
|
||||
# convert Cie Lab to msh colorspace
|
||||
# from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls
|
||||
def CIELab2Msh(Lab):
|
||||
Msh = [0.0,0.0,0.0]
|
||||
Msh[0] = math.sqrt(Lab[0]**2.0 + Lab[1]**2.0 + Lab[2]**2.0)
|
||||
if (Msh[0] != 0.0) and (Msh[0] > 0.001):
|
||||
Msh[1] = math.acos(Lab[0]/Msh[0])
|
||||
if (Lab[1] != 0.0) and (Msh[1] > 0.001):
|
||||
Msh[2] = math.atan2(Lab[2],Lab[1])
|
||||
return Msh
|
||||
|
||||
# convert msh colorspace to Cie Lab
|
||||
# from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls
|
||||
def Msh2CIELab(Msh):
|
||||
Lab = [0.0,0.0,0.0]
|
||||
Lab[0] = Msh[0] * math.cos(Msh[1])
|
||||
Lab[1] = Msh[0] * math.sin(Msh[1]) * math.cos(Msh[2])
|
||||
Lab[2] = Msh[0] * math.sin(Msh[1]) * math.sin(Msh[2])
|
||||
return Lab
|
Loading…
Reference in New Issue