166 lines
4.1 KiB
Python
166 lines
4.1 KiB
Python
|
#!/usr/bin/python
|
||
|
# -*- coding: UTF-8 no BOM -*-
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy.optimize import curve_fit
|
||
|
from scipy.linalg import svd
|
||
|
import threading
|
||
|
import time
|
||
|
|
||
|
def asFullTensor(voigt):
|
||
|
return np.array([[voigt[0],voigt[3],voigt[5]],\
|
||
|
[voigt[3],voigt[1],voigt[4]],\
|
||
|
[voigt[5],voigt[4],voigt[2]]])
|
||
|
|
||
|
def Hill48(x, F,G,H,L,M,N):
|
||
|
return F*(x[1]-x[2])**2 + G*(x[2]-x[0])**2 + H*(x[0]-x[1])** + \
|
||
|
2*L*x[4]**2 + 2*M*x[5]**2 + 2*N*x[3]**2 -1.
|
||
|
|
||
|
def vonMises(x, S_y):
|
||
|
p = svd(asFullTensor(x))
|
||
|
return (s[2]-s[1])**2+(s[1]-s[0])**2+(s[0]-s[2])**2-2*S_y**2
|
||
|
|
||
|
#---------------------------------------------------------------------------------------------------
|
||
|
class Loadcase():
|
||
|
#---------------------------------------------------------------------------------------------------
|
||
|
'''
|
||
|
Class for generating load cases for the spectral solver
|
||
|
'''
|
||
|
|
||
|
# ------------------------------------------------------------------
|
||
|
def __init__(self):
|
||
|
print('using the random load case generator')
|
||
|
|
||
|
def getNext(self,N=0):
|
||
|
defgrad=['*']*9
|
||
|
stress =[0]*9
|
||
|
values=(np.random.random_sample(9)-.5)*scale*2
|
||
|
|
||
|
main=np.array([0,4,8])
|
||
|
np.random.shuffle(main)
|
||
|
for i in main[:2]:
|
||
|
defgrad[i]=1.+values[i]
|
||
|
stress[i]='*'
|
||
|
for off in [[1,3,0],[2,6,0],[5,7,0]]:
|
||
|
off=np.array(off)
|
||
|
np.random.shuffle(off)
|
||
|
print off
|
||
|
if off[0] != 0:
|
||
|
defgrad[off[0]]=values[off[0]]
|
||
|
stress[off[0]]='*'
|
||
|
return 'f '+' '.join(str(c) for c in defgrad)+\
|
||
|
' p '+' '.join(str(c) for c in stress)+\
|
||
|
' incs %s'%incs+\
|
||
|
' time %s'%duration
|
||
|
|
||
|
#---------------------------------------------------------------------------------------------------
|
||
|
class Criterion(object):
|
||
|
#---------------------------------------------------------------------------------------------------
|
||
|
'''
|
||
|
Fitting to certain criterion
|
||
|
'''
|
||
|
def __init__(self,name):
|
||
|
self.name = name.lower()
|
||
|
if self.name not in ['hill48','vonmises']: print('Mist')
|
||
|
print('using the %s criterion'%self.name)
|
||
|
self.popt = 0.0
|
||
|
|
||
|
def fit(self,stress):
|
||
|
print len(stress)
|
||
|
if self.name == 'hill48':
|
||
|
try:
|
||
|
self.popt, pcov = curve_fit(Hill48, stress, np.zeros(np.shape(stress)[0]))
|
||
|
print self.popt
|
||
|
except:
|
||
|
pass
|
||
|
elif self.name == 'vonmises':
|
||
|
try:
|
||
|
self.popt, pcov = curve_fit(vonMises, stress.transpose(), np.shape(stress)[0])
|
||
|
except:
|
||
|
pass
|
||
|
|
||
|
|
||
|
#---------------------------------------------------------------------------------------------------
|
||
|
|
||
|
#---------------------------------------------------------------------------------------------------
|
||
|
'''
|
||
|
Runner class
|
||
|
'''
|
||
|
class myThread (threading.Thread):
|
||
|
def __init__(self, threadID):
|
||
|
threading.Thread.__init__(self)
|
||
|
self.threadID = threadID
|
||
|
def run(self):
|
||
|
s.acquire()
|
||
|
conv=converged()
|
||
|
s.release()
|
||
|
while not conv:
|
||
|
doSim(4.,self.name)
|
||
|
s.acquire()
|
||
|
conv=converged()
|
||
|
s.release()
|
||
|
|
||
|
def doSim(delay,thread):
|
||
|
s.acquire()
|
||
|
me=getLoadcase()+1
|
||
|
print('starting sim %i from thread %s'%(me,thread))
|
||
|
f=open('%s.load'%me,'w')
|
||
|
f.write(myLoad.getNext(me))
|
||
|
f.close()
|
||
|
#dummy
|
||
|
voigt = np.random.random_sample(6)*90e6
|
||
|
global stressAll
|
||
|
stressAll=np.append(stressAll,asFullTensor(voigt).reshape(1,9))
|
||
|
stressAll=stressAll.reshape(len(stressAll)//9,9)
|
||
|
myFit.fit(stressAll)
|
||
|
s.release()
|
||
|
time.sleep(delay)
|
||
|
s.acquire()
|
||
|
print('doing postprocessing sim %i from thread %s'%(me,thread))
|
||
|
s.release()
|
||
|
|
||
|
def getLoadcase():
|
||
|
global N_simulations
|
||
|
N_simulations+=1
|
||
|
return N_simulations
|
||
|
|
||
|
def converged():
|
||
|
global N_simulations
|
||
|
global maxN_simulations
|
||
|
if N_simulations < maxN_simulations:
|
||
|
return False
|
||
|
else:
|
||
|
return True
|
||
|
|
||
|
# main
|
||
|
|
||
|
minN_simulations=20
|
||
|
maxN_simulations=10
|
||
|
N_simulations=0
|
||
|
s=threading.Semaphore(1)
|
||
|
scale = 0.02
|
||
|
incs = 10
|
||
|
duration = 10
|
||
|
stressAll=np.zeros(0,'d')
|
||
|
|
||
|
myLoad = Loadcase()
|
||
|
myFit = Criterion('Hill48')
|
||
|
|
||
|
N_threads=3
|
||
|
t=[]
|
||
|
|
||
|
for i in range(N_threads):
|
||
|
t.append(myThread(i))
|
||
|
t[i].start()
|
||
|
|
||
|
for i in range(N_threads):
|
||
|
t[i].join()
|
||
|
|
||
|
a, b = curve_fit(Hill48, stressAll.transpose(), np.zeros(10))
|
||
|
print a
|
||
|
print "Exiting Main Thread"
|
||
|
|
||
|
|
||
|
|
||
|
|