109 lines
4.5 KiB
Python
109 lines
4.5 KiB
Python
|
#!/usr/bin/env python2.7
|
||
|
# -*- coding: UTF-8 no BOM -*-
|
||
|
|
||
|
import os,sys
|
||
|
import numpy as np
|
||
|
from optparse import OptionParser
|
||
|
import damask
|
||
|
|
||
|
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
||
|
scriptID = ' '.join([scriptName,damask.version])
|
||
|
|
||
|
# --------------------------------------------------------------------
|
||
|
# MAIN
|
||
|
# --------------------------------------------------------------------
|
||
|
|
||
|
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
||
|
Add data of selected column(s) from (first) row of second ASCIItable that shares the mapping column value.
|
||
|
|
||
|
""", version = scriptID)
|
||
|
|
||
|
parser.add_option('-c','--map',
|
||
|
dest = 'map', nargs = 2,
|
||
|
type = 'string', metavar = 'string string',
|
||
|
help = 'column labels containing linked values')
|
||
|
parser.add_option('-l','--label',
|
||
|
dest = 'label',
|
||
|
action = 'extend', metavar = '<string LIST>',
|
||
|
help='column label(s) to be appended')
|
||
|
parser.add_option('-a','--asciitable',
|
||
|
dest = 'asciitable',
|
||
|
type = 'string', metavar = 'string',
|
||
|
help = 'indexed ASCIItable')
|
||
|
|
||
|
parser.set_defaults()
|
||
|
|
||
|
(options,filenames) = parser.parse_args()
|
||
|
|
||
|
if options.label is None:
|
||
|
parser.error('no data columns specified.')
|
||
|
if options.map is None:
|
||
|
parser.error('no mapping columns given.')
|
||
|
|
||
|
# ------------------------------------------ process mapping ASCIItable ---------------------------
|
||
|
|
||
|
if options.asciitable is not None and os.path.isfile(options.asciitable):
|
||
|
|
||
|
mappedTable = damask.ASCIItable(name = options.asciitable,
|
||
|
buffered = False,
|
||
|
readonly = True)
|
||
|
mappedTable.head_read() # read ASCII header info of mapped table
|
||
|
if mappedTable.label_dimension(options.map[1]) != 1:
|
||
|
parser.error('mapping column {} needs to be scalar valued.'.format(options.map[1]))
|
||
|
|
||
|
missing_labels = mappedTable.data_readArray([options.map[1]]+options.label)
|
||
|
mappedTable.close() # close mapped input ASCII table
|
||
|
|
||
|
if len(missing_labels) > 0:
|
||
|
damask.util.croak('column{} {} not found...'.format('s' if len(missing_labels) > 1 else '',', '.join(missing_labels)))
|
||
|
|
||
|
else:
|
||
|
parser.error('no indexed ASCIItable given.')
|
||
|
|
||
|
# --- loop over input files -------------------------------------------------------------------------
|
||
|
|
||
|
if filenames == []: filenames = [None]
|
||
|
|
||
|
for name in filenames:
|
||
|
try: table = damask.ASCIItable(name = name,
|
||
|
buffered = False)
|
||
|
except: continue
|
||
|
damask.util.report(scriptName,name)
|
||
|
|
||
|
# ------------------------------------------ read header ------------------------------------------
|
||
|
|
||
|
table.head_read()
|
||
|
|
||
|
# ------------------------------------------ sanity checks ----------------------------------------
|
||
|
|
||
|
errors = []
|
||
|
|
||
|
mappedColumn = table.label_index(options.map[0])
|
||
|
if mappedColumn < 0: errors.append('mapping column {} not found.'.format(options.map[0]))
|
||
|
|
||
|
if errors != []:
|
||
|
damask.util.croak(errors)
|
||
|
table.close(dismiss = True)
|
||
|
continue
|
||
|
|
||
|
# ------------------------------------------ assemble header --------------------------------------
|
||
|
|
||
|
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||
|
table.labels_append(mappedTable.labels(raw = True)[1:]) # extend with new labels (except for mapped column)
|
||
|
table.head_write()
|
||
|
|
||
|
# ------------------------------------------ process data ------------------------------------------
|
||
|
|
||
|
outputAlive = True
|
||
|
while outputAlive and table.data_read(): # read next data line of ASCII table
|
||
|
try:
|
||
|
table.data_append(mappedTable.data[np.argwhere(mappedTable.data[:,0] ==
|
||
|
float(table.data[mappedColumn]))[0]]) # add data from first matching line
|
||
|
except IndexError:
|
||
|
table.data_append(np.nan*np.ones_like(mappedTable.data[0])) # or add NaNs
|
||
|
outputAlive = table.data_write() # output processed line
|
||
|
|
||
|
# ------------------------------------------ output finalization -----------------------------------
|
||
|
|
||
|
table.close() # close ASCII tables
|