DAMASK_EICMD/src/phase_mechanical_plastic_no...

1696 lines
94 KiB
Fortran
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

!--------------------------------------------------------------------------------------------------
!> @author Christoph Kords, Max-Planck-Institut für Eisenforschung GmbH
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for plasticity including dislocation flux
!--------------------------------------------------------------------------------------------------
submodule(phase:plastic) nonlocal
use geometry_plastic_nonlocal, only: &
nCellNeighbors => geometry_plastic_nonlocal_nIPneighbors, &
IPneighborhood => geometry_plastic_nonlocal_IPneighborhood, &
IPvolume0 => geometry_plastic_nonlocal_IPvolume0, &
IParea0 => geometry_plastic_nonlocal_IParea0, &
IPareaNormal0 => geometry_plastic_nonlocal_IPareaNormal0, &
geometry_plastic_nonlocal_disable
type :: tGeometry
real(pREAL), dimension(:), allocatable :: v_0
real(pREAL), dimension(:,:), allocatable :: a_0, x_0
real(pREAL), dimension(:,:,:), allocatable :: n_0
integer, dimension(:,:,:), allocatable :: IPneighborhood
end type tGeometry
type(tGeometry), dimension(:), allocatable :: geom
! storage order of dislocation types
integer, dimension(*), parameter :: &
sgl = [1,2,3,4,5,6,7,8] !< signed (single)
integer, dimension(*), parameter :: &
edg = [1,2,5,6,9], & !< edge
scr = [3,4,7,8,10] !< screw
integer, dimension(*), parameter :: &
mob = [1,2,3,4], & !< mobile
imm = [5,6,7,8] !< immobile (blocked)
integer, dimension(*), parameter :: &
dip = [9,10], & !< dipole
imm_edg = imm(1:2), & !< immobile edge
imm_scr = imm(3:4) !< immobile screw
integer, parameter :: &
mob_edg_pos = 1, & !< mobile edge positive
mob_edg_neg = 2, & !< mobile edge negative
mob_scr_pos = 3, & !< mobile screw positive
mob_scr_neg = 4 !< mobile screw positive
real(pREAL), dimension(:,:,:,:,:,:), allocatable :: &
compatibility !< slip system compatibility between en and my neighbors
type :: tInitialParameters !< container type for internal constitutive parameters
real(pREAL) :: &
sigma_rho_u, & !< standard deviation of scatter in initial dislocation density
random_rho_u, &
random_rho_u_binning
real(pREAL), dimension(:), allocatable :: &
rho_u_ed_pos_0, & !< initial edge_pos dislocation density
rho_u_ed_neg_0, & !< initial edge_neg dislocation density
rho_u_sc_pos_0, & !< initial screw_pos dislocation density
rho_u_sc_neg_0, & !< initial screw_neg dislocation density
rho_d_ed_0, & !< initial edge dipole dislocation density
rho_d_sc_0 !< initial screw dipole dislocation density
integer, dimension(:), allocatable :: &
N_sl
end type tInitialParameters
type :: tParameters !< container type for internal constitutive parameters
real(pREAL) :: &
V_at, & !< atomic volume
D_0, & !< prefactor for self-diffusion coefficient
Q_cl, & !< activation enthalpy for diffusion
atol_rho, & !< absolute tolerance for dislocation density in state integration
rho_significant, & !< density considered significant
rho_min, & !< number of dislocations considered significant
w, & !< width of a doubkle kink in multiples of the Burgers vector length b
Q_sol, & !< activation energy for solid solution in J
f_sol, & !< solid solution obstacle size in multiples of the Burgers vector length
c_sol, & !< concentration of solid solution in atomic parts
p, & !< parameter for kinetic law (Kocks,Argon,Ashby)
q, & !< parameter for kinetic law (Kocks,Argon,Ashby)
B, & !< drag coefficient in Pa s
nu_a, & !< attack frequency in Hz
chi_surface, & !< transmissivity at free surface
chi_GB, & !< transmissivity at grain boundary (identified by different texture)
C_CFL, & !< safety factor for CFL flux condition
f_ed_mult, & !< factor that determines how much edge dislocations contribute to multiplication (0...1)
f_F, &
f_ed, &
mu, &
nu
real(pREAL), dimension(:), allocatable :: &
i_sl, & !< mean free path prefactor for each
b_sl !< absolute length of Burgers vector [m]
real(pREAL), dimension(:,:), allocatable :: &
slip_normal, &
slip_direction, &
slip_transverse, &
minDipoleHeight, & ! minimum stable dipole height edge and screw
peierlsstress, & ! edge and screw
h_sl_sl ,& !< coefficients for slip-slip interaction
forestProjection_Edge, & !< matrix of forest projections of edge dislocations
forestProjection_Screw !< matrix of forest projections of screw dislocations
real(pREAL), dimension(:,:,:), allocatable :: &
P_sl, & !< Schmid contribution
P_nS_pos, &
P_nS_neg !< combined projection of Schmid and non-Schmid contributions to the resolved shear stress (only for screws)
integer :: &
sum_N_sl = 0
integer, dimension(:), allocatable :: &
colinearSystem !< colinear system to the active slip system (only valid for fcc!)
character(len=:), allocatable :: &
isotropic_bound
character(len=pSTRLEN), dimension(:), allocatable :: &
output
logical :: &
shortRangeStressCorrection !< use of short range stress correction by excess density gradient term
character(len=:), allocatable, dimension(:) :: &
systems_sl
end type tParameters
type :: tNonlocalDependentState
real(pREAL), allocatable, dimension(:,:) :: &
tau_pass, &
tau_back, &
rho_forest, &
max_dipole_height
real(pREAL), allocatable, dimension(:,:,:,:,:) :: &
compatibility
end type tNonlocalDependentState
type :: tNonlocalState
real(pREAL), pointer, dimension(:,:) :: &
rho, & ! < all dislocations
rho_sgl, &
rho_sgl_mob, &
rho_sgl_mob_edg_pos, &
rho_sgl_mob_edg_neg, &
rho_sgl_mob_scr_pos, &
rho_sgl_mob_scr_neg, &
rho_sgl_imm, &
rho_sgl_imm_edg_pos, &
rho_sgl_imm_edg_neg, &
rho_sgl_imm_scr_pos, &
rho_sgl_imm_scr_neg, &
rho_dip, &
rho_dip_edg, &
rho_dip_scr, &
gamma, &
v, &
v_edg_pos, &
v_edg_neg, &
v_scr_pos, &
v_scr_neg
end type tNonlocalState
type(tNonlocalState), allocatable, dimension(:) :: &
deltaState, &
dotState, &
state, &
state0
type(tParameters), dimension(:), allocatable :: param !< containers of constitutive parameters
type(tNonlocalDependentState), dimension(:), allocatable :: dependentState
contains
!--------------------------------------------------------------------------------------------------
!> @brief Perform module initialization.
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
module function plastic_nonlocal_init() result(myPlasticity)
logical, dimension(:), allocatable :: myPlasticity
integer :: &
ph, &
Nmembers, &
sizeState, sizeDotState, sizeDeltaState, &
s1, s2
real(pREAL), dimension(:,:), allocatable :: &
a_nS !< non-Schmid coefficients
character(len=:), allocatable :: &
refs, &
extmsg
type(tInitialParameters) :: &
ini
type(tDict), pointer :: &
phases, &
phase, &
mech, &
pl
myPlasticity = plastic_active('nonlocal')
if (count(myPlasticity) == 0) then
call geometry_plastic_nonlocal_disable()
return
end if
print'(/,1x,a)', '<<<+- phase:mechanical:plastic:nonlocal init -+>>>'
print'(/,1x,a)', 'C. Reuber et al., Acta Materialia 71:333348, 2014'
print'( 1x,a)', 'https://doi.org/10.1016/j.actamat.2014.03.012'
print'(/,1x,a)', 'C. Kords, Dissertation RWTH Aachen, 2014'
print'( 1x,a)', 'http://publications.rwth-aachen.de/record/229993'
print'(/,1x,a,1x,i0)', '# phases:',count(myPlasticity); flush(IO_STDOUT)
phases => config_material%get_dict('phase')
allocate(geom(phases%length))
allocate(param(phases%length))
allocate(state(phases%length))
allocate(state0(phases%length))
allocate(dotState(phases%length))
allocate(deltaState(phases%length))
allocate(dependentState(phases%length))
extmsg = ''
do ph = 1, phases%length
if (.not. myPlasticity(ph)) cycle
associate(prm => param(ph), dot => dotState(ph), stt => state(ph), &
st0 => state0(ph), del => deltaState(ph), dst => dependentState(ph))
phase => phases%get_dict(ph)
mech => phase%get_dict('mechanical')
pl => mech%get_dict('plastic')
print'(/,1x,a,1x,i0,a)', 'phase',ph,': '//phases%key(ph)
refs = config_listReferences(pl,indent=3)
if (len(refs) > 0) print'(/,1x,a)', refs
#if defined (__GFORTRAN__)
prm%output = output_as1dStr(pl)
#else
prm%output = pl%get_as1dStr('output',defaultVal=emptyStrArray)
#endif
plasticState(ph)%nonlocal = pl%get_asBool('flux',defaultVal=.True.)
prm%isotropic_bound = pl%get_asStr('isotropic_bound',defaultVal='isostrain')
prm%atol_rho = pl%get_asReal('atol_rho',defaultVal=1.0_pREAL)
ini%N_sl = pl%get_as1dInt('N_sl',defaultVal=emptyIntArray)
prm%sum_N_sl = sum(abs(ini%N_sl))
slipActive: if (prm%sum_N_sl > 0) then
prm%systems_sl = crystal_labels_slip(ini%N_sl,phase_lattice(ph))
prm%P_sl = crystal_SchmidMatrix_slip(ini%N_sl,phase_lattice(ph), phase_cOverA(ph))
if (phase_lattice(ph) == 'cI') then
allocate(a_nS(3,size(pl%get_as1dReal('a_nonSchmid_110',defaultVal=emptyRealArray))),source=0.0_pREAL) ! anticipating parameters for all three families
a_nS(1,:) = pl%get_as1dReal('a_nonSchmid_110',defaultVal=emptyRealArray)
prm%P_nS_pos = crystal_SchmidMatrix_slip(ini%N_sl,phase_lattice(ph),phase_cOverA(ph),nonSchmidCoefficients=a_nS,sense=+1)
prm%P_nS_neg = crystal_SchmidMatrix_slip(ini%N_sl,phase_lattice(ph),phase_cOverA(ph),nonSchmidCoefficients=a_nS,sense=-1)
deallocate(a_nS)
else
prm%P_nS_pos = +prm%P_sl
prm%P_nS_neg = -prm%P_sl
end if
prm%h_sl_sl = crystal_interaction_SlipBySlip(ini%N_sl,pl%get_as1dReal('h_sl-sl'), &
phase_lattice(ph))
prm%forestProjection_edge = crystal_forestProjection_edge (ini%N_sl,phase_lattice(ph),&
phase_cOverA(ph))
prm%forestProjection_screw = crystal_forestProjection_screw(ini%N_sl,phase_lattice(ph),&
phase_cOverA(ph))
prm%slip_direction = crystal_slip_direction (ini%N_sl,phase_lattice(ph),phase_cOverA(ph))
prm%slip_transverse = crystal_slip_transverse(ini%N_sl,phase_lattice(ph),phase_cOverA(ph))
prm%slip_normal = crystal_slip_normal (ini%N_sl,phase_lattice(ph),phase_cOverA(ph))
! collinear systems (only for octahedral slip systems in fcc)
allocate(prm%colinearSystem(prm%sum_N_sl), source = -1)
do s1 = 1, prm%sum_N_sl
do s2 = 1, prm%sum_N_sl
if (all(dEq0 (math_cross(prm%slip_direction(1:3,s1),prm%slip_direction(1:3,s2)))) .and. &
any(dNeq0(math_cross(prm%slip_normal (1:3,s1),prm%slip_normal (1:3,s2))))) &
prm%colinearSystem(s1) = s2
end do
end do
ini%rho_u_ed_pos_0 = pl%get_as1dReal('rho_u_ed_pos_0', requiredSize=size(ini%N_sl))
ini%rho_u_ed_neg_0 = pl%get_as1dReal('rho_u_ed_neg_0', requiredSize=size(ini%N_sl))
ini%rho_u_sc_pos_0 = pl%get_as1dReal('rho_u_sc_pos_0', requiredSize=size(ini%N_sl))
ini%rho_u_sc_neg_0 = pl%get_as1dReal('rho_u_sc_neg_0', requiredSize=size(ini%N_sl))
ini%rho_d_ed_0 = pl%get_as1dReal('rho_d_ed_0', requiredSize=size(ini%N_sl))
ini%rho_d_sc_0 = pl%get_as1dReal('rho_d_sc_0', requiredSize=size(ini%N_sl))
prm%i_sl = math_expand(pl%get_as1dReal('i_sl', requiredSize=size(ini%N_sl)),ini%N_sl)
prm%b_sl = math_expand(pl%get_as1dReal('b_sl', requiredSize=size(ini%N_sl)),ini%N_sl)
allocate(prm%minDipoleHeight(prm%sum_N_sl,2))
prm%minDipoleHeight(:,1) = math_expand(pl%get_as1dReal('d_ed', requiredSize=size(ini%N_sl)),ini%N_sl)
prm%minDipoleHeight(:,2) = math_expand(pl%get_as1dReal('d_sc', requiredSize=size(ini%N_sl)),ini%N_sl)
allocate(prm%peierlsstress(prm%sum_N_sl,2))
prm%peierlsstress(:,1) = math_expand(pl%get_as1dReal('tau_Peierls_ed', requiredSize=size(ini%N_sl)),ini%N_sl)
prm%peierlsstress(:,2) = math_expand(pl%get_as1dReal('tau_Peierls_sc', requiredSize=size(ini%N_sl)),ini%N_sl)
prm%rho_significant = pl%get_asReal('rho_significant')
prm%rho_min = pl%get_asReal('rho_min', 0.0_pREAL)
prm%C_CFL = pl%get_asReal('C_CFL',defaultVal=2.0_pREAL)
prm%V_at = pl%get_asReal('V_at')
prm%D_0 = pl%get_asReal('D_0')
prm%Q_cl = pl%get_asReal('Q_cl')
prm%f_F = pl%get_asReal('f_F')
prm%f_ed = pl%get_asReal('f_ed')
prm%w = pl%get_asReal('w')
prm%Q_sol = pl%get_asReal('Q_sol')
prm%f_sol = pl%get_asReal('f_sol')
prm%c_sol = pl%get_asReal('c_sol')
prm%p = pl%get_asReal('p_sl')
prm%q = pl%get_asReal('q_sl')
prm%B = pl%get_asReal('B')
prm%nu_a = pl%get_asReal('nu_a')
! ToDo: discuss logic
ini%sigma_rho_u = pl%get_asReal('sigma_rho_u')
ini%random_rho_u = pl%get_asReal('random_rho_u',defaultVal= 0.0_pREAL)
if (pl%contains('random_rho_u')) &
ini%random_rho_u_binning = pl%get_asReal('random_rho_u_binning',defaultVal=0.0_pREAL) !ToDo: useful default?
! if (rhoSglRandom(instance) < 0.0_pREAL) &
! if (rhoSglRandomBinning(instance) <= 0.0_pREAL) &
prm%chi_surface = pl%get_asReal('chi_surface',defaultVal=1.0_pREAL)
prm%chi_GB = pl%get_asReal('chi_GB', defaultVal=-1.0_pREAL)
prm%f_ed_mult = pl%get_asReal('f_ed_mult')
prm%shortRangeStressCorrection = pl%get_asBool('short_range_stress_correction', defaultVal = .false.)
!--------------------------------------------------------------------------------------------------
! sanity checks
if (any(prm%b_sl < 0.0_pREAL)) extmsg = trim(extmsg)//' b_sl'
if (any(prm%i_sl <= 0.0_pREAL)) extmsg = trim(extmsg)//' i_sl'
if (any(ini%rho_u_ed_pos_0 < 0.0_pREAL)) extmsg = trim(extmsg)//' rho_u_ed_pos_0'
if (any(ini%rho_u_ed_neg_0 < 0.0_pREAL)) extmsg = trim(extmsg)//' rho_u_ed_neg_0'
if (any(ini%rho_u_sc_pos_0 < 0.0_pREAL)) extmsg = trim(extmsg)//' rho_u_sc_pos_0'
if (any(ini%rho_u_sc_neg_0 < 0.0_pREAL)) extmsg = trim(extmsg)//' rho_u_sc_neg_0'
if (any(ini%rho_d_ed_0 < 0.0_pREAL)) extmsg = trim(extmsg)//' rho_d_ed_0'
if (any(ini%rho_d_sc_0 < 0.0_pREAL)) extmsg = trim(extmsg)//' rho_d_sc_0'
if (any(prm%peierlsstress < 0.0_pREAL)) extmsg = trim(extmsg)//' tau_peierls'
if (any(prm%minDipoleHeight < 0.0_pREAL)) extmsg = trim(extmsg)//' d_ed or d_sc'
if (prm%B < 0.0_pREAL) extmsg = trim(extmsg)//' B'
if (prm%Q_cl < 0.0_pREAL) extmsg = trim(extmsg)//' Q_cl'
if (prm%nu_a <= 0.0_pREAL) extmsg = trim(extmsg)//' nu_a'
if (prm%w <= 0.0_pREAL) extmsg = trim(extmsg)//' w'
if (prm%D_0 < 0.0_pREAL) extmsg = trim(extmsg)//' D_0'
if (prm%V_at <= 0.0_pREAL) extmsg = trim(extmsg)//' V_at' ! ToDo: in dislotungsten, the atomic volume is given as a factor
if (prm%rho_min < 0.0_pREAL) extmsg = trim(extmsg)//' rho_min'
if (prm%rho_significant < 0.0_pREAL) extmsg = trim(extmsg)//' rho_significant'
if (prm%atol_rho < 0.0_pREAL) extmsg = trim(extmsg)//' atol_rho'
if (prm%C_CFL < 0.0_pREAL) extmsg = trim(extmsg)//' C_CFL'
if (prm%p <= 0.0_pREAL .or. prm%p > 1.0_pREAL) extmsg = trim(extmsg)//' p_sl'
if (prm%q < 1.0_pREAL .or. prm%q > 2.0_pREAL) extmsg = trim(extmsg)//' q_sl'
if (prm%f_F < 0.0_pREAL .or. prm%f_F > 1.0_pREAL) &
extmsg = trim(extmsg)//' f_F'
if (prm%f_ed < 0.0_pREAL .or. prm%f_ed > 1.0_pREAL) &
extmsg = trim(extmsg)//' f_ed'
if (prm%Q_sol <= 0.0_pREAL) extmsg = trim(extmsg)//' Q_sol'
if (prm%f_sol <= 0.0_pREAL) extmsg = trim(extmsg)//' f_sol'
if (prm%c_sol <= 0.0_pREAL) extmsg = trim(extmsg)//' c_sol'
if (prm%chi_GB > 1.0_pREAL) extmsg = trim(extmsg)//' chi_GB'
if (prm%chi_surface < 0.0_pREAL .or. prm%chi_surface > 1.0_pREAL) &
extmsg = trim(extmsg)//' chi_surface'
if (prm%f_ed_mult < 0.0_pREAL .or. prm%f_ed_mult > 1.0_pREAL) &
extmsg = trim(extmsg)//' f_ed_mult'
end if slipActive
!--------------------------------------------------------------------------------------------------
! allocate state arrays
Nmembers = count(material_ID_phase == ph)
sizeDotState = size(['rho_sgl_mob_edg_pos', 'rho_sgl_mob_edg_neg', &
'rho_sgl_mob_scr_pos', 'rho_sgl_mob_scr_neg', &
'rho_sgl_imm_edg_pos', 'rho_sgl_imm_edg_neg', &
'rho_sgl_imm_scr_pos', 'rho_sgl_imm_scr_neg', &
'rho_dip_edg ', 'rho_dip_scr ', &
'gamma ' ]) * prm%sum_N_sl !< "basic" microstructural state variables that are independent from other state variables
sizeState = sizeDotState &
+ size([ 'velocityEdgePos ','velocityEdgeNeg ', &
'velocityScrewPos ','velocityScrewNeg ']) * prm%sum_N_sl !< other dependent state variables that are not updated by microstructure
sizeDeltaState = sizeDotState
call phase_allocateState(plasticState(ph),Nmembers,sizeState,sizeDotState,sizeDeltaState,0) ! ToDo: state structure does not follow convention
allocate(geom(ph)%v_0(Nmembers))
allocate(geom(ph)%a_0(nCellNeighbors,Nmembers))
allocate(geom(ph)%x_0(3,Nmembers))
allocate(geom(ph)%n_0(3,nCellNeighbors,Nmembers))
allocate(geom(ph)%IPneighborhood(3,nCellNeighbors,Nmembers))
call storeGeometry(ph)
if (plasticState(ph)%nonlocal .and. .not. allocated(IPneighborhood)) &
call IO_error(212,ext_msg='IPneighborhood does not exist')
st0%rho => plasticState(ph)%state0 (0*prm%sum_N_sl+1:10*prm%sum_N_sl,:)
stt%rho => plasticState(ph)%state (0*prm%sum_N_sl+1:10*prm%sum_N_sl,:)
dot%rho => plasticState(ph)%dotState (0*prm%sum_N_sl+1:10*prm%sum_N_sl,:)
del%rho => plasticState(ph)%deltaState (0*prm%sum_N_sl+1:10*prm%sum_N_sl,:)
plasticState(ph)%atol(1:10*prm%sum_N_sl) = prm%atol_rho
stt%rho_sgl => plasticState(ph)%state (0*prm%sum_N_sl+1: 8*prm%sum_N_sl,:)
dot%rho_sgl => plasticState(ph)%dotState (0*prm%sum_N_sl+1: 8*prm%sum_N_sl,:)
del%rho_sgl => plasticState(ph)%deltaState (0*prm%sum_N_sl+1: 8*prm%sum_N_sl,:)
st0%rho_sgl_mob => plasticState(ph)%state0 (0*prm%sum_N_sl+1: 4*prm%sum_N_sl,:)
stt%rho_sgl_mob => plasticState(ph)%state (0*prm%sum_N_sl+1: 4*prm%sum_N_sl,:)
dot%rho_sgl_mob => plasticState(ph)%dotState (0*prm%sum_N_sl+1: 4*prm%sum_N_sl,:)
del%rho_sgl_mob => plasticState(ph)%deltaState (0*prm%sum_N_sl+1: 4*prm%sum_N_sl,:)
stt%rho_sgl_mob_edg_pos => plasticState(ph)%state (0*prm%sum_N_sl+1: 1*prm%sum_N_sl,:)
dot%rho_sgl_mob_edg_pos => plasticState(ph)%dotState (0*prm%sum_N_sl+1: 1*prm%sum_N_sl,:)
del%rho_sgl_mob_edg_pos => plasticState(ph)%deltaState (0*prm%sum_N_sl+1: 1*prm%sum_N_sl,:)
stt%rho_sgl_mob_edg_neg => plasticState(ph)%state (1*prm%sum_N_sl+1: 2*prm%sum_N_sl,:)
dot%rho_sgl_mob_edg_neg => plasticState(ph)%dotState (1*prm%sum_N_sl+1: 2*prm%sum_N_sl,:)
del%rho_sgl_mob_edg_neg => plasticState(ph)%deltaState (1*prm%sum_N_sl+1: 2*prm%sum_N_sl,:)
stt%rho_sgl_mob_scr_pos => plasticState(ph)%state (2*prm%sum_N_sl+1: 3*prm%sum_N_sl,:)
dot%rho_sgl_mob_scr_pos => plasticState(ph)%dotState (2*prm%sum_N_sl+1: 3*prm%sum_N_sl,:)
del%rho_sgl_mob_scr_pos => plasticState(ph)%deltaState (2*prm%sum_N_sl+1: 3*prm%sum_N_sl,:)
stt%rho_sgl_mob_scr_neg => plasticState(ph)%state (3*prm%sum_N_sl+1: 4*prm%sum_N_sl,:)
dot%rho_sgl_mob_scr_neg => plasticState(ph)%dotState (3*prm%sum_N_sl+1: 4*prm%sum_N_sl,:)
del%rho_sgl_mob_scr_neg => plasticState(ph)%deltaState (3*prm%sum_N_sl+1: 4*prm%sum_N_sl,:)
stt%rho_sgl_imm => plasticState(ph)%state (4*prm%sum_N_sl+1: 8*prm%sum_N_sl,:)
dot%rho_sgl_imm => plasticState(ph)%dotState (4*prm%sum_N_sl+1: 8*prm%sum_N_sl,:)
del%rho_sgl_imm => plasticState(ph)%deltaState (4*prm%sum_N_sl+1: 8*prm%sum_N_sl,:)
stt%rho_sgl_imm_edg_pos => plasticState(ph)%state (4*prm%sum_N_sl+1: 5*prm%sum_N_sl,:)
dot%rho_sgl_imm_edg_pos => plasticState(ph)%dotState (4*prm%sum_N_sl+1: 5*prm%sum_N_sl,:)
del%rho_sgl_imm_edg_pos => plasticState(ph)%deltaState (4*prm%sum_N_sl+1: 5*prm%sum_N_sl,:)
stt%rho_sgl_imm_edg_neg => plasticState(ph)%state (5*prm%sum_N_sl+1: 6*prm%sum_N_sl,:)
dot%rho_sgl_imm_edg_neg => plasticState(ph)%dotState (5*prm%sum_N_sl+1: 6*prm%sum_N_sl,:)
del%rho_sgl_imm_edg_neg => plasticState(ph)%deltaState (5*prm%sum_N_sl+1: 6*prm%sum_N_sl,:)
stt%rho_sgl_imm_scr_pos => plasticState(ph)%state (6*prm%sum_N_sl+1: 7*prm%sum_N_sl,:)
dot%rho_sgl_imm_scr_pos => plasticState(ph)%dotState (6*prm%sum_N_sl+1: 7*prm%sum_N_sl,:)
del%rho_sgl_imm_scr_pos => plasticState(ph)%deltaState (6*prm%sum_N_sl+1: 7*prm%sum_N_sl,:)
stt%rho_sgl_imm_scr_neg => plasticState(ph)%state (7*prm%sum_N_sl+1: 8*prm%sum_N_sl,:)
dot%rho_sgl_imm_scr_neg => plasticState(ph)%dotState (7*prm%sum_N_sl+1: 8*prm%sum_N_sl,:)
del%rho_sgl_imm_scr_neg => plasticState(ph)%deltaState (7*prm%sum_N_sl+1: 8*prm%sum_N_sl,:)
stt%rho_dip => plasticState(ph)%state (8*prm%sum_N_sl+1:10*prm%sum_N_sl,:)
dot%rho_dip => plasticState(ph)%dotState (8*prm%sum_N_sl+1:10*prm%sum_N_sl,:)
del%rho_dip => plasticState(ph)%deltaState (8*prm%sum_N_sl+1:10*prm%sum_N_sl,:)
stt%rho_dip_edg => plasticState(ph)%state (8*prm%sum_N_sl+1: 9*prm%sum_N_sl,:)
dot%rho_dip_edg => plasticState(ph)%dotState (8*prm%sum_N_sl+1: 9*prm%sum_N_sl,:)
del%rho_dip_edg => plasticState(ph)%deltaState (8*prm%sum_N_sl+1: 9*prm%sum_N_sl,:)
stt%rho_dip_scr => plasticState(ph)%state (9*prm%sum_N_sl+1:10*prm%sum_N_sl,:)
dot%rho_dip_scr => plasticState(ph)%dotState (9*prm%sum_N_sl+1:10*prm%sum_N_sl,:)
del%rho_dip_scr => plasticState(ph)%deltaState (9*prm%sum_N_sl+1:10*prm%sum_N_sl,:)
stt%gamma => plasticState(ph)%state (10*prm%sum_N_sl + 1:11*prm%sum_N_sl,1:Nmembers)
dot%gamma => plasticState(ph)%dotState (10*prm%sum_N_sl + 1:11*prm%sum_N_sl,1:Nmembers)
del%gamma => plasticState(ph)%deltaState (10*prm%sum_N_sl + 1:11*prm%sum_N_sl,1:Nmembers)
plasticState(ph)%atol(10*prm%sum_N_sl+1:11*prm%sum_N_sl ) = pl%get_asReal('atol_gamma', defaultVal = 1.0e-6_pREAL)
if (any(plasticState(ph)%atol(10*prm%sum_N_sl+1:11*prm%sum_N_sl) < 0.0_pREAL)) &
extmsg = trim(extmsg)//' atol_gamma'
stt%v => plasticState(ph)%state (11*prm%sum_N_sl + 1:15*prm%sum_N_sl,1:Nmembers)
st0%v => plasticState(ph)%state0 (11*prm%sum_N_sl + 1:15*prm%sum_N_sl,1:Nmembers)
stt%v_edg_pos => plasticState(ph)%state (11*prm%sum_N_sl + 1:12*prm%sum_N_sl,1:Nmembers)
stt%v_edg_neg => plasticState(ph)%state (12*prm%sum_N_sl + 1:13*prm%sum_N_sl,1:Nmembers)
stt%v_scr_pos => plasticState(ph)%state (13*prm%sum_N_sl + 1:14*prm%sum_N_sl,1:Nmembers)
stt%v_scr_neg => plasticState(ph)%state (14*prm%sum_N_sl + 1:15*prm%sum_N_sl,1:Nmembers)
allocate(dst%tau_pass(prm%sum_N_sl,Nmembers),source=0.0_pREAL)
allocate(dst%tau_back(prm%sum_N_sl,Nmembers),source=0.0_pREAL)
allocate(dst%rho_forest(prm%sum_N_sl,Nmembers),source=0.0_pREAL)
allocate(dst%max_dipole_height(2*prm%sum_N_sl,Nmembers),source=0.0_pREAL) ! edge and screw
allocate(dst%compatibility(2,maxval(param%sum_N_sl),maxval(param%sum_N_sl),nCellNeighbors,Nmembers),source=0.0_pREAL)
end associate
if (Nmembers > 0) call stateInit(ini,ph,Nmembers)
!--------------------------------------------------------------------------------------------------
! exit if any parameter is out of range
if (extmsg /= '') call IO_error(211,ext_msg=trim(extmsg))
end do
allocate(compatibility(2,maxval(param%sum_N_sl),maxval(param%sum_N_sl),nCellNeighbors,&
discretization_nIPs,discretization_Nelems), source=0.0_pREAL)
end function plastic_nonlocal_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates quantities characterizing the microstructure
!--------------------------------------------------------------------------------------------------
module subroutine nonlocal_dependentState(ph, en)
integer, intent(in) :: &
ph, &
en
integer :: &
en_nbr, & ! neighbor phase entry
el_nbr, & ! element number of neighboring material point
ip_nbr, & ! integration point of neighboring material point
c, & ! index of dilsocation character (edge, screw)
s, & ! slip system index
dir, &
n
real(pREAL) :: &
FVsize, &
nRealNeighbors, & ! number of really existing neighbors
mu, &
nu
integer, dimension(2) :: &
neighbors
real(pREAL), dimension(2) :: &
rhoExcessGradient, &
rhoExcessGradient_over_rho, &
rho_sum
real(pREAL), dimension(3) :: &
rhoExcessDifferences, &
normal_latticeConf
real(pREAL), dimension(3,3) :: &
invFe, & !< inverse of elastic deformation gradient
invFp, & !< inverse of plastic deformation gradient
connections, &
invConnections
real(pREAL), dimension(3,nCellNeighbors) :: &
connection_latticeConf
real(pREAL), dimension(param(ph)%sum_N_sl) :: &
rho_edg_delta, &
rho_scr_delta
real(pREAL), dimension(param(ph)%sum_N_sl,10) :: &
rho, &
rho_0, &
rho_0_nbr
real(pREAL), dimension(param(ph)%sum_N_sl,param(ph)%sum_N_sl) :: &
myInteractionMatrix ! corrected slip interaction matrix
real(pREAL), dimension(param(ph)%sum_N_sl,nCellNeighbors) :: &
rho_edg_delta_nbr, &
rho_scr_delta_nbr
real(pREAL), dimension(2,maxval(param%sum_N_sl),nCellNeighbors) :: &
rho_delta_nbr, & ! excess density at neighboring material point
rho_sum_nbr ! total density at neighboring material point
real(pREAL), dimension(3,param(ph)%sum_N_sl,2) :: &
m ! direction of dislocation motion
associate(prm => param(ph),dst => dependentState(ph), stt => state(ph))
mu = elastic_mu(ph,en,prm%isotropic_bound)
nu = elastic_nu(ph,en,prm%isotropic_bound)
rho = getRho(ph,en)
dst%rho_forest(:,en) = matmul(prm%forestProjection_Edge, sum(abs(rho(:,edg)),2)) &
+ matmul(prm%forestProjection_Screw,sum(abs(rho(:,scr)),2))
! coefficients are corrected for the line tension effect
! (see Kubin,Devincre,Hoc; 2008; Modeling dislocation storage rates and mean free paths in face-centered cubic crystals)
if (any(phase_lattice(ph) == ['cI','cF'])) then
myInteractionMatrix = prm%h_sl_sl &
* spread(( 1.0_pREAL - prm%f_F &
+ prm%f_F &
* log(0.35_pREAL * prm%b_sl * sqrt(max(dst%rho_forest(:,en),prm%rho_significant))) &
/ log(0.35_pREAL * prm%b_sl * 1e6_pREAL))**2,2,prm%sum_N_sl)
else
myInteractionMatrix = prm%h_sl_sl
end if
dst%tau_pass(:,en) = mu * prm%b_sl &
* sqrt(matmul(myInteractionMatrix,sum(abs(rho),2)))
!*** calculate the dislocation stress of the neighboring excess dislocation densities
!*** zero for material points of local plasticity
!#################################################################################################
! ToDo: MD: this is most likely only correct for F_i = I
!#################################################################################################
rho_0 = getRho0(ph,en)
if (plasticState(ph)%nonlocal .and. prm%shortRangeStressCorrection) then
invFp = math_inv33(phase_mechanical_Fp(ph)%data(1:3,1:3,en))
invFe = math_inv33(phase_mechanical_Fe(ph)%data(1:3,1:3,en))
rho_edg_delta = rho_0(:,mob_edg_pos) - rho_0(:,mob_edg_neg)
rho_scr_delta = rho_0(:,mob_scr_pos) - rho_0(:,mob_scr_neg)
FVsize = geom(ph)%v_0(en)**(1.0_pREAL/3.0_pREAL)
!* loop through my neighborhood and get the connection vectors (in lattice frame) and the excess densities
nRealNeighbors = 0.0_pREAL
rho_sum_nbr = 0.0_pREAL
do n = 1,nCellNeighbors
el_nbr = geom(ph)%IPneighborhood(1,n,en)
ip_nbr = geom(ph)%IPneighborhood(2,n,en)
if (el_nbr > 0 .and. ip_nbr > 0) then
if (material_ID_phase(1,(el_nbr-1)*discretization_nIPs + ip_nbr) == ph) then
en_nbr = material_entry_phase(1,(el_nbr-1)*discretization_nIPs + ip_nbr)
nRealNeighbors = nRealNeighbors + 1.0_pREAL
rho_0_nbr = getRho0(ph,en_nbr)
rho_edg_delta_nbr(:,n) = rho_0_nbr(:,mob_edg_pos) - rho_0_nbr(:,mob_edg_neg)
rho_scr_delta_nbr(:,n) = rho_0_nbr(:,mob_scr_pos) - rho_0_nbr(:,mob_scr_neg)
rho_sum_nbr(1,:,n) = sum(abs(rho_0_nbr(:,edg)),2)
rho_sum_nbr(2,:,n) = sum(abs(rho_0_nbr(:,scr)),2)
connection_latticeConf(1:3,n) = matmul(invFe, geom(ph)%x_0(1:3,en_nbr) &
- geom(ph)%x_0(1:3,en))
normal_latticeConf = matmul(transpose(invFp), geom(ph)%n_0(1:3,n,en))
if (math_inner(normal_latticeConf,connection_latticeConf(1:3,n)) < 0.0_pREAL) & ! neighboring connection points in opposite direction to face normal: must be periodic image
connection_latticeConf(1:3,n) = normal_latticeConf * geom(ph)%v_0(en)/geom(ph)%a_0(n,en) ! instead take the surface normal scaled with the diameter of the cell
else
! local neighbor or different lattice structure or different constitution instance -> use central values instead
connection_latticeConf(1:3,n) = 0.0_pREAL
rho_edg_delta_nbr(:,n) = rho_edg_delta
rho_scr_delta_nbr(:,n) = rho_scr_delta
end if
else
! free surface -> use central values instead
connection_latticeConf(1:3,n) = 0.0_pREAL
rho_edg_delta_nbr(:,n) = rho_edg_delta
rho_scr_delta_nbr(:,n) = rho_scr_delta
end if
end do
rho_delta_nbr(1,:,:) = rho_edg_delta_nbr
rho_delta_nbr(2,:,:) = rho_scr_delta_nbr
!* loop through the slip systems and calculate the dislocation gradient by
!* 1. interpolation of the excess density in the neighorhood
!* 2. interpolation of the dead dislocation density in the central volume
m(1:3,:,1) = prm%slip_direction
m(1:3,:,2) = -prm%slip_transverse
do s = 1,prm%sum_N_sl
! gradient from interpolation of neighboring excess density ...
do c = 1,2
do dir = 1,3
neighbors(1) = 2 * dir - 1
neighbors(2) = 2 * dir
connections(dir,1:3) = connection_latticeConf(1:3,neighbors(1)) &
- connection_latticeConf(1:3,neighbors(2))
rhoExcessDifferences(dir) = rho_delta_nbr(c,s,neighbors(1)) &
- rho_delta_nbr(c,s,neighbors(2))
end do
invConnections = math_inv33(connections)
if (all(dEq0(invConnections))) call IO_error(-1,ext_msg='back stress calculation: inversion error')
rhoExcessGradient(c) = math_inner(m(1:3,s,c), matmul(invConnections,rhoExcessDifferences))
end do
! ... plus gradient from deads ...
rhoExcessGradient(1) = rhoExcessGradient(1) + sum(rho(s,imm_edg)) / FVsize
rhoExcessGradient(2) = rhoExcessGradient(2) + sum(rho(s,imm_scr)) / FVsize
! ... normalized with the total density ...
rho_sum(1) = (sum(abs(rho(s,edg))) + sum(rho_sum_nbr(1,s,:))) / (1.0_pREAL + nRealNeighbors)
rho_sum(2) = (sum(abs(rho(s,scr))) + sum(rho_sum_nbr(2,s,:))) / (1.0_pREAL + nRealNeighbors)
rhoExcessGradient_over_rho = 0.0_pREAL
where(rho_sum > 0.0_pREAL) rhoExcessGradient_over_rho = rhoExcessGradient / rho_sum
! ... gives the local stress correction when multiplied with a factor
dst%tau_back(s,en) = - mu * prm%b_sl(s) / (2.0_pREAL * PI) &
* ( rhoExcessGradient_over_rho(1) / (1.0_pREAL - nu) &
+ rhoExcessGradient_over_rho(2))
end do
end if
end associate
end subroutine nonlocal_dependentState
!--------------------------------------------------------------------------------------------------
!> @brief calculates plastic velocity gradient and its tangent
!--------------------------------------------------------------------------------------------------
module subroutine nonlocal_LpAndItsTangent(Lp,dLp_dMp, &
Mp,ph,en)
real(pREAL), dimension(3,3), intent(out) :: &
Lp !< plastic velocity gradient
real(pREAL), dimension(3,3,3,3), intent(out) :: &
dLp_dMp
integer, intent(in) :: &
ph, &
en
real(pREAL), dimension(3,3), intent(in) :: &
Mp
!< derivative of Lp with respect to Mp
integer :: &
i, j, k, l, &
t, & !< dislocation type
s !< index of my current slip system
real(pREAL), dimension(param(ph)%sum_N_sl,8) :: &
rho_sgl !< single dislocation densities (including blocked)
real(pREAL), dimension(param(ph)%sum_N_sl,10) :: &
rho
real(pREAL), dimension(param(ph)%sum_N_sl,4) :: &
v, & !< velocity
tauNS, & !< resolved shear stress including non Schmid and backstress terms
dv_dtau, & !< velocity derivative with respect to the shear stress
dv_dtauNS !< velocity derivative with respect to the shear stress
real(pREAL), dimension(param(ph)%sum_N_sl) :: &
tau, & !< resolved shear stress including backstress terms
dot_gamma !< shear rate
real(pREAL) :: &
Temperature !< temperature
Temperature = thermal_T(ph,en)
Lp = 0.0_pREAL
dLp_dMp = 0.0_pREAL
associate(prm => param(ph),dst=>dependentState(ph),stt=>state(ph))
!*** shortcut to state variables
rho = getRho(ph,en)
rho_sgl = rho(:,sgl)
do s = 1,prm%sum_N_sl
tau(s) = math_tensordot(Mp, prm%P_sl(1:3,1:3,s))
tauNS(s,1) = tau(s)
tauNS(s,2) = tau(s)
if (tau(s) > 0.0_pREAL) then
tauNS(s,3) = math_tensordot(Mp, +prm%P_nS_pos(1:3,1:3,s))
tauNS(s,4) = math_tensordot(Mp, -prm%P_nS_neg(1:3,1:3,s))
else
tauNS(s,3) = math_tensordot(Mp, +prm%P_nS_neg(1:3,1:3,s))
tauNS(s,4) = math_tensordot(Mp, -prm%P_nS_pos(1:3,1:3,s))
end if
end do
tauNS = tauNS + spread(dst%tau_back(:,en),2,4)
tau = tau + dst%tau_back(:,en)
! edges
call kinetics(v(:,1), dv_dtau(:,1), dv_dtauNS(:,1), &
tau, tauNS(:,1), dst%tau_pass(:,en),1,Temperature, ph)
v(:,2) = v(:,1)
dv_dtau(:,2) = dv_dtau(:,1)
dv_dtauNS(:,2) = dv_dtauNS(:,1)
!screws
do t = 3,4
call kinetics(v(:,t), dv_dtau(:,t), dv_dtauNS(:,t), &
tau, tauNS(:,t), dst%tau_pass(:,en),2,Temperature, ph)
end do
stt%v(:,en) = pack(v,.true.)
!*** Bauschinger effect
forall (s = 1:prm%sum_N_sl, t = 5:8, rho_sgl(s,t) * v(s,t-4) < 0.0_pREAL) &
rho_sgl(s,t-4) = rho_sgl(s,t-4) + abs(rho_sgl(s,t))
dot_gamma = sum(rho_sgl(:,1:4) * v, 2) * prm%b_sl
do s = 1,prm%sum_N_sl
Lp = Lp + dot_gamma(s) * prm%P_sl(1:3,1:3,s)
forall (i=1:3,j=1:3,k=1:3,l=1:3) &
dLp_dMp(i,j,k,l) = dLp_dMp(i,j,k,l) &
+ prm%P_sl(i,j,s) * prm%P_sl(k,l,s) &
* sum(rho_sgl(s,1:4) * dv_dtau(s,1:4)) * prm%b_sl(s) &
+ prm%P_sl(i,j,s) &
* (+ prm%P_nS_pos(k,l,s) * rho_sgl(s,3) * dv_dtauNS(s,3) &
- prm%P_nS_neg(k,l,s) * rho_sgl(s,4) * dv_dtauNS(s,4)) * prm%b_sl(s)
end do
end associate
end subroutine nonlocal_LpAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief (instantaneous) incremental change of microstructure
!--------------------------------------------------------------------------------------------------
module subroutine plastic_nonlocal_deltaState(Mp,ph,en)
real(pREAL), dimension(3,3), intent(in) :: &
Mp !< MandelStress
integer, intent(in) :: &
ph, &
en
integer :: &
c, & ! character of dislocation
t, & ! type of dislocation
s ! index of my current slip system
real(pREAL) :: &
mu, &
nu
real(pREAL), dimension(param(ph)%sum_N_sl,10) :: &
deltaRhoRemobilization, & ! density increment by remobilization
deltaRhoDipole2SingleStress ! density increment by dipole dissociation (by stress change)
real(pREAL), dimension(param(ph)%sum_N_sl,10) :: &
rho ! current dislocation densities
real(pREAL), dimension(param(ph)%sum_N_sl,4) :: &
v ! dislocation glide velocity
real(pREAL), dimension(param(ph)%sum_N_sl) :: &
tau ! current resolved shear stress
real(pREAL), dimension(param(ph)%sum_N_sl,2) :: &
rho_dip, & ! current dipole dislocation densities (screw and edge dipoles)
dUpper, & ! current maximum stable dipole distance for edges and screws
dUpperOld, & ! old maximum stable dipole distance for edges and screws
deltaDUpper ! change in maximum stable dipole distance for edges and screws
associate(prm => param(ph),dst => dependentState(ph),del => deltaState(ph), stt=>state(ph))
mu = elastic_mu(ph,en,prm%isotropic_bound)
nu = elastic_nu(ph,en,prm%isotropic_bound)
!*** shortcut to state variables
v = reshape(stt%v(:,en),[prm%sum_N_sl,4])
dUpperOld = reshape(dst%max_dipole_height(:,en),[prm%sum_N_sl,2])
rho = getRho(ph,en)
rho_dip = rho(:,dip)
!****************************************************************************
!*** dislocation remobilization (bauschinger effect)
where(rho(:,imm) * v < 0.0_pREAL)
deltaRhoRemobilization(:,mob) = abs(rho(:,imm))
deltaRhoRemobilization(:,imm) = - rho(:,imm)
rho(:,mob) = rho(:,mob) + abs(rho(:,imm))
rho(:,imm) = 0.0_pREAL
elsewhere
deltaRhoRemobilization(:,mob) = 0.0_pREAL
deltaRhoRemobilization(:,imm) = 0.0_pREAL
endwhere
deltaRhoRemobilization(:,dip) = 0.0_pREAL
!****************************************************************************
!*** calculate dipole formation and dissociation by stress change
!*** calculate limits for stable dipole height
do s = 1,prm%sum_N_sl
tau(s) = math_tensordot(Mp, prm%P_sl(1:3,1:3,s)) +dst%tau_back(s,en)
if (abs(tau(s)) < 1.0e-15_pREAL) tau(s) = 1.0e-15_pREAL
end do
dUpper(:,1) = mu * prm%b_sl/(8.0_pREAL * PI * (1.0_pREAL - nu) * abs(tau))
dUpper(:,2) = mu * prm%b_sl/(4.0_pREAL * PI * abs(tau))
where(dNeq0(sqrt(sum(abs(rho(:,edg)),2)))) &
dUpper(:,1) = min(1.0_pREAL/sqrt(sum(abs(rho(:,edg)),2)),dUpper(:,1))
where(dNeq0(sqrt(sum(abs(rho(:,scr)),2)))) &
dUpper(:,2) = min(1.0_pREAL/sqrt(sum(abs(rho(:,scr)),2)),dUpper(:,2))
dUpper = max(dUpper,prm%minDipoleHeight)
deltaDUpper = dUpper - dUpperOld
!*** dissociation by stress increase
deltaRhoDipole2SingleStress = 0.0_pREAL
forall (c=1:2, s=1:prm%sum_N_sl, deltaDUpper(s,c) < 0.0_pREAL .and. &
dNeq0(dUpperOld(s,c) - prm%minDipoleHeight(s,c))) &
deltaRhoDipole2SingleStress(s,8+c) = rho_dip(s,c) * deltaDUpper(s,c) &
/ (dUpperOld(s,c) - prm%minDipoleHeight(s,c))
forall (t=1:4) deltaRhoDipole2SingleStress(:,t) = -0.5_pREAL * deltaRhoDipole2SingleStress(:,(t-1)/2+9)
dst%max_dipole_height(:,en) = pack(dUpper,.true.)
plasticState(ph)%deltaState(:,en) = 0.0_pREAL
del%rho(:,en) = reshape(deltaRhoRemobilization + deltaRhoDipole2SingleStress, [10*prm%sum_N_sl])
end associate
end subroutine plastic_nonlocal_deltaState
!---------------------------------------------------------------------------------------------------
!> @brief calculates the rate of change of microstructure
!---------------------------------------------------------------------------------------------------
module subroutine nonlocal_dotState(Mp,timestep, &
ph,en)
real(pREAL), dimension(3,3), intent(in) :: &
Mp !< MandelStress
real(pREAL), intent(in) :: &
timestep !< substepped crystallite time increment
integer, intent(in) :: &
ph, &
en
integer :: &
c, & !< character of dislocation
s !< index of my current slip system
real(pREAL), dimension(param(ph)%sum_N_sl,10) :: &
rho, &
rhoDot, & !< density evolution
rhoDotMultiplication, & !< density evolution by multiplication
rhoDotSingle2DipoleGlide, & !< density evolution by dipole formation (by glide)
rhoDotAthermalAnnihilation, & !< density evolution by athermal annihilation
rhoDotThermalAnnihilation !< density evolution by thermal annihilation
real(pREAL), dimension(param(ph)%sum_N_sl,8) :: &
rho_sgl !< current single dislocation densities (positive/negative screw and edge without dipoles)
real(pREAL), dimension(param(ph)%sum_N_sl,4) :: &
v, & !< current dislocation glide velocity
dot_gamma !< shear rates
real(pREAL), dimension(param(ph)%sum_N_sl) :: &
tau, & !< current resolved shear stress
v_climb !< climb velocity of edge dipoles
real(pREAL), dimension(param(ph)%sum_N_sl,2) :: &
rho_dip, & !< current dipole dislocation densities (screw and edge dipoles)
dLower, & !< minimum stable dipole distance for edges and screws
dUpper !< current maximum stable dipole distance for edges and screws
real(pREAL) :: &
D_SD, &
mu, &
nu, Temperature
if (timestep <= 0.0_pREAL) then
plasticState(ph)%dotState = 0.0_pREAL
return
end if
associate(prm => param(ph), dst => dependentState(ph), dot => dotState(ph), &
stt => state(ph), st0 => state0(ph))
mu = elastic_mu(ph,en,prm%isotropic_bound)
nu = elastic_nu(ph,en,prm%isotropic_bound)
Temperature = thermal_T(ph,en)
tau = 0.0_pREAL
dot_gamma = 0.0_pREAL
rho = getRho(ph,en)
rho_sgl = rho(:,sgl)
rho_dip = rho(:,dip)
v = reshape(stt%v(:,en),[prm%sum_N_sl,4])
dot_gamma = rho_sgl(:,1:4) * v * spread(prm%b_sl,2,4)
! limits for stable dipole height
do s = 1,prm%sum_N_sl
tau(s) = math_tensordot(Mp, prm%P_sl(1:3,1:3,s)) + dst%tau_back(s,en)
if (abs(tau(s)) < 1.0e-15_pREAL) tau(s) = 1.0e-15_pREAL
end do
dLower = prm%minDipoleHeight
dUpper(:,1) = mu * prm%b_sl/(8.0_pREAL * PI * (1.0_pREAL - nu) * abs(tau))
dUpper(:,2) = mu * prm%b_sl/(4.0_pREAL * PI * abs(tau))
where(dNeq0(sqrt(sum(abs(rho(:,edg)),2)))) &
dUpper(:,1) = min(1.0_pREAL/sqrt(sum(abs(rho(:,edg)),2)),dUpper(:,1))
where(dNeq0(sqrt(sum(abs(rho(:,scr)),2)))) &
dUpper(:,2) = min(1.0_pREAL/sqrt(sum(abs(rho(:,scr)),2)),dUpper(:,2))
dUpper = max(dUpper,dLower)
! dislocation multiplication
rhoDotMultiplication = 0.0_pREAL
isBCC: if (phase_lattice(ph) == 'cI') then
forall (s = 1:prm%sum_N_sl, sum(abs(v(s,1:4))) > 0.0_pREAL)
rhoDotMultiplication(s,1:2) = sum(abs(dot_gamma(s,3:4))) / prm%b_sl(s) & ! assuming double-cross-slip of screws to be decisive for multiplication
* sqrt(dst%rho_forest(s,en)) / prm%i_sl(s) ! & ! mean free path
! * 2.0_pREAL * sum(abs(v(s,3:4))) / sum(abs(v(s,1:4))) ! ratio of screw to overall velocity determines edge generation
rhoDotMultiplication(s,3:4) = sum(abs(dot_gamma(s,3:4))) /prm%b_sl(s) & ! assuming double-cross-slip of screws to be decisive for multiplication
* sqrt(dst%rho_forest(s,en)) / prm%i_sl(s) ! & ! mean free path
! * 2.0_pREAL * sum(abs(v(s,1:2))) / sum(abs(v(s,1:4))) ! ratio of edge to overall velocity determines screw generation
endforall
else isBCC
rhoDotMultiplication(:,1:4) = spread( &
(sum(abs(dot_gamma(:,1:2)),2) * prm%f_ed_mult + sum(abs(dot_gamma(:,3:4)),2)) &
* sqrt(dst%rho_forest(:,en)) / prm%i_sl / prm%b_sl, 2, 4) ! eq. 3.26
end if isBCC
!****************************************************************************
! dipole formation and annihilation
! formation by glide
do c = 1,2
rhoDotSingle2DipoleGlide(:,2*c-1) = -2.0_pREAL * dUpper(:,c) / prm%b_sl &
* ( rho_sgl(:,2*c-1) * abs(dot_gamma(:,2*c)) & ! negative mobile --> positive mobile
+ rho_sgl(:,2*c) * abs(dot_gamma(:,2*c-1)) & ! positive mobile --> negative mobile
+ abs(rho_sgl(:,2*c+4)) * abs(dot_gamma(:,2*c-1))) ! positive mobile --> negative immobile
rhoDotSingle2DipoleGlide(:,2*c) = -2.0_pREAL * dUpper(:,c) / prm%b_sl &
* ( rho_sgl(:,2*c-1) * abs(dot_gamma(:,2*c)) & ! negative mobile --> positive mobile
+ rho_sgl(:,2*c) * abs(dot_gamma(:,2*c-1)) & ! positive mobile --> negative mobile
+ abs(rho_sgl(:,2*c+3)) * abs(dot_gamma(:,2*c))) ! negative mobile --> positive immobile
rhoDotSingle2DipoleGlide(:,2*c+3) = -2.0_pREAL * dUpper(:,c) / prm%b_sl &
* rho_sgl(:,2*c+3) * abs(dot_gamma(:,2*c)) ! negative mobile --> positive immobile
rhoDotSingle2DipoleGlide(:,2*c+4) = -2.0_pREAL * dUpper(:,c) / prm%b_sl &
* rho_sgl(:,2*c+4) * abs(dot_gamma(:,2*c-1)) ! positive mobile --> negative immobile
rhoDotSingle2DipoleGlide(:,c+8) = abs(rhoDotSingle2DipoleGlide(:,2*c+3)) &
+ abs(rhoDotSingle2DipoleGlide(:,2*c+4)) &
- rhoDotSingle2DipoleGlide(:,2*c-1) &
- rhoDotSingle2DipoleGlide(:,2*c)
end do
! athermal annihilation
rhoDotAthermalAnnihilation = 0.0_pREAL
forall (c=1:2) &
rhoDotAthermalAnnihilation(:,c+8) = -2.0_pREAL * dLower(:,c) / prm%b_sl &
* ( 2.0_pREAL * (rho_sgl(:,2*c-1) * abs(dot_gamma(:,2*c)) + rho_sgl(:,2*c) * abs(dot_gamma(:,2*c-1))) & ! was single hitting single
+ 2.0_pREAL * (abs(rho_sgl(:,2*c+3)) * abs(dot_gamma(:,2*c)) + abs(rho_sgl(:,2*c+4)) * abs(dot_gamma(:,2*c-1))) & ! was single hitting immobile single or was immobile single hit by single
+ rho_dip(:,c) * (abs(dot_gamma(:,2*c-1)) + abs(dot_gamma(:,2*c)))) ! single knocks dipole constituent
! annihilated screw dipoles leave edge jogs behind on the colinear system
if (phase_lattice(ph) == 'cF') &
forall (s = 1:prm%sum_N_sl, prm%colinearSystem(s) > 0) &
rhoDotAthermalAnnihilation(prm%colinearSystem(s),1:2) = - rhoDotAthermalAnnihilation(s,10) &
* 0.25_pREAL * sqrt(dst%rho_forest(s,en)) * (dUpper(s,2) + dLower(s,2)) * prm%f_ed
! thermally activated annihilation of edge dipoles by climb
rhoDotThermalAnnihilation = 0.0_pREAL
D_SD = prm%D_0 * exp(-prm%Q_cl / (K_B * Temperature)) ! eq. 3.53
v_climb = D_SD * mu * prm%V_at &
/ (PI * (1.0_pREAL-nu) * (dUpper(:,1) + dLower(:,1)) * K_B * Temperature) ! eq. 3.54
forall (s = 1:prm%sum_N_sl, dUpper(s,1) > dLower(s,1)) &
rhoDotThermalAnnihilation(s,9) = max(- 4.0_pREAL * rho_dip(s,1) * v_climb(s) / (dUpper(s,1) - dLower(s,1)), &
- rho_dip(s,1) / timestep - rhoDotAthermalAnnihilation(s,9) &
- rhoDotSingle2DipoleGlide(s,9)) ! make sure that we do not annihilate more dipoles than we have
rhoDot = rhoDotFlux(timestep, ph,en) &
+ rhoDotMultiplication &
+ rhoDotSingle2DipoleGlide &
+ rhoDotAthermalAnnihilation &
+ rhoDotThermalAnnihilation
if ( any(rho(:,mob) + rhoDot(:,1:4) * timestep < -prm%atol_rho) &
.or. any(rho(:,dip) + rhoDot(:,9:10) * timestep < -prm%atol_rho)) then
plasticState(ph)%dotState = IEEE_value(1.0_pREAL,IEEE_quiet_NaN)
else
dot%rho(:,en) = pack(rhoDot,.true.)
dot%gamma(:,en) = sum(dot_gamma,2)
end if
end associate
end subroutine nonlocal_dotState
!---------------------------------------------------------------------------------------------------
!> @brief calculates the rate of change of microstructure
!---------------------------------------------------------------------------------------------------
#if __INTEL_COMPILER >= 2020
non_recursive function rhoDotFlux(timestep,ph,en)
#else
function rhoDotFlux(timestep,ph,en)
#endif
real(pREAL), intent(in) :: &
timestep !< substepped crystallite time increment
integer, intent(in) :: &
ph, &
en
integer :: &
ns, & !< short notation for the total number of active slip systems
c, & !< character of dislocation
n, & !< index of my current neighbor
el_nbr, & !< element number of my neighbor
ip_nbr, & !< integration point of my neighbor
n_nbr, & !< neighbor index pointing to en when looking from my neighbor
opposite_neighbor, & !< index of my opposite neighbor
opposite_ip, & !< ip of my opposite neighbor
opposite_el, & !< element index of my opposite neighbor
opposite_n, & !< neighbor index pointing to en when looking from my opposite neighbor
t, & !< type of dislocation
en_nbr,& !< neighbor phase entry
ph_nbr,& !< neighbor phase ID
topp, & !< type of dislocation with opposite sign to t
s !< index of my current slip system
real(pREAL), dimension(param(ph)%sum_N_sl,10) :: &
rho, &
rho_0, & !< dislocation density at beginning of time step
rhoDotFlux !< density evolution by flux
real(pREAL), dimension(param(ph)%sum_N_sl,4) :: &
rho_0_sgl_mob, & !< mobile dislocation densities of neighboring ip (positive/negative screw and edge)
rho_0_sgl_mob_nbr, & !< mobile dislocation densities of neighboring ip (positive/negative screw and edge)
v, & !< dislocation glide velocity
v_0, &
v_0_nbr, & !< dislocation glide velocity of enighboring ip
dot_gamma !< shear rates
real(pREAL), dimension(3,param(ph)%sum_N_sl,4) :: &
m !< direction of dislocation motion
real(pREAL), dimension(3,3) :: &
my_F, & !< my total deformation gradient
F_nbr, & !< total deformation gradient of my neighbor
my_Fe, & !< my elastic deformation gradient
F_e_nbr, & !< elastic deformation gradient of my neighbor
Favg !< average total deformation gradient of en and my neighbor
real(pREAL), dimension(3) :: &
normal_neighbor2me, & !< interface normal pointing from my neighbor to en in neighbor's lattice configuration
normal_neighbor2me_defConf, & !< interface normal pointing from my neighbor to en in shared deformed configuration
normal_me2neighbor, & !< interface normal pointing from en to my neighbor in my lattice configuration
normal_me2neighbor_defConf !< interface normal pointing from en to my neighbor in shared deformed configuration
real(pREAL) :: &
a, & !< area of the current interface
transmissivity, & !< overall transmissivity of dislocation flux to neighboring material point
lineLength !< dislocation line length leaving the current interface
associate(prm => param(ph), &
dst => dependentState(ph), &
stt => state(ph), &
st0 => state0(ph))
ns = prm%sum_N_sl
dot_gamma = 0.0_pREAL
rho = getRho(ph,en)
rho_0 = getRho0(ph,en)
rho_0_sgl_mob = rho_0(:,mob)
v = reshape(stt%v(:,en),[prm%sum_N_sl,4]) !ToDo: MD: I think we should use state0 here
dot_gamma = rho(:,mob) * v * spread(prm%b_sl,2,4)
v_0 = reshape(st0%v(:,en),[prm%sum_N_sl,4])
!****************************************************************************
!*** calculate dislocation fluxes (only for nonlocal plasticity)
rhoDotFlux = 0.0_pREAL
if (plasticState(ph)%nonlocal) then
!*** check CFL (Courant-Friedrichs-Lewy) condition for flux
if (any( abs(dot_gamma) > 0.0_pREAL & ! any active slip system ...
.and. prm%C_CFL * abs(v_0) * timestep &
> geom(ph)%v_0(en)/ maxval(geom(ph)%a_0(:,en)))) then ! ...with velocity above critical value (we use the reference volume and area for simplicity here)
rhoDotFlux = IEEE_value(1.0_pREAL,IEEE_quiet_NaN) ! enforce cutback
return
end if
!*** be aware of the definition of slip_transverse = slip_direction x slip_normal !!!
!*** opposite sign to our t vector in the (s,t,n) triplet !!!
m(1:3,:,1) = prm%slip_direction
m(1:3,:,2) = -prm%slip_direction
m(1:3,:,3) = -prm%slip_transverse
m(1:3,:,4) = prm%slip_transverse
my_F = phase_mechanical_F(ph)%data(1:3,1:3,en)
my_Fe = matmul(my_F, math_inv33(phase_mechanical_Fp(ph)%data(1:3,1:3,en)))
neighbors: do n = 1,nCellNeighbors
el_nbr = geom(ph)%IPneighborhood(1,n,en)
ip_nbr = geom(ph)%IPneighborhood(2,n,en)
n_nbr = geom(ph)%IPneighborhood(3,n,en)
ph_nbr = material_ID_phase(1,(el_nbr-1)*discretization_nIPs + ip_nbr)
en_nbr = material_entry_phase(1,(el_nbr-1)*discretization_nIPs + ip_nbr)
opposite_neighbor = n + mod(n,2) - mod(n+1,2)
opposite_el = geom(ph)%IPneighborhood(1,opposite_neighbor,en)
opposite_ip = geom(ph)%IPneighborhood(2,opposite_neighbor,en)
opposite_n = geom(ph)%IPneighborhood(3,opposite_neighbor,en)
if (n_nbr > 0) then ! if neighbor exists, average deformation gradient
F_nbr = phase_mechanical_F(ph_nbr)%data(1:3,1:3,en_nbr)
F_e_nbr = matmul(F_nbr, math_inv33(phase_mechanical_Fp(ph_nbr)%data(1:3,1:3,en_nbr)))
Favg = 0.5_pREAL * (my_F + F_nbr)
else ! if no neighbor, take my value as average
Favg = my_F
end if
v_0_nbr = 0.0_pREAL ! needed for check of sign change in flux density below
!* FLUX FROM MY NEIGHBOR TO ME
!* This is only considered, if I have a neighbor of nonlocal plasticity
!* (also nonlocal constitutive law with local properties) that is at least a little bit
!* compatible.
!* If it's not at all compatible, no flux is arriving, because everything is dammed in front of
!* my neighbor's interface.
!* The entering flux from my neighbor will be distributed on my slip systems according to the
!* compatibility
if (n_nbr > 0) then
if (mechanical_plasticity_type(ph_nbr) == MECHANICAL_PLASTICITY_NONLOCAL .and. &
any(dependentState(ph)%compatibility(:,:,:,n,en) > 0.0_pREAL)) then
! ToDo MD: Not sure if ns is correct here, but I think that compatibility is 0 if different phase
v_0_nbr = reshape(state0(ph_nbr)%v(:,en_nbr),[ns,4])
rho_0_sgl_mob_nbr = max(reshape(state0(ph_nbr)%rho_sgl_mob(:,en_nbr),[ns,4]),0.0_pREAL)
where (rho_0_sgl_mob_nbr * geom(ph_nbr)%v_0(en_nbr) ** 0.667_pREAL < prm%rho_min &
.or. rho_0_sgl_mob_nbr < prm%rho_significant) &
rho_0_sgl_mob_nbr = 0.0_pREAL
normal_neighbor2me_defConf = math_det33(Favg) * matmul(math_inv33(transpose(Favg)), &
geom(ph_nbr)%n_0(1:3,n_nbr,en_nbr)) ! normal of the interface in (average) deformed configuration (pointing neighbor => en)
normal_neighbor2me = matmul(transpose(F_e_nbr), normal_neighbor2me_defConf) &
/ math_det33(F_e_nbr) ! interface normal in the lattice configuration of my neighbor
a = geom(ph_nbr)%a_0(n_nbr,en_nbr) * norm2(normal_neighbor2me)
normal_neighbor2me = normal_neighbor2me / norm2(normal_neighbor2me) ! normalize the surface normal to unit length
do s = 1,ns
do t = 1,4
c = (t + 1) / 2
topp = t + mod(t,2) - mod(t+1,2)
if (v_0_nbr(s,t) * math_inner(m(1:3,s,t), normal_neighbor2me) > 0.0_pREAL & ! flux from my neighbor to en == entering flux for en
.and. v_0(s,t) * v_0_nbr(s,t) >= 0.0_pREAL ) then ! ... only if no sign change in flux density
lineLength = rho_0_sgl_mob_nbr(s,t) * v_0_nbr(s,t) &
* math_inner(m(1:3,s,t), normal_neighbor2me) * a ! positive line length that wants to enter through this interface
where (dependentState(ph)%compatibility(c,:,s,n,en) > 0.0_pREAL) &
rhoDotFlux(:,t) = rhoDotFlux(1:ns,t) &
+ lineLength/geom(ph)%v_0(en)*dependentState(ph)%compatibility(c,:,s,n,en)**2 ! transferring to equally signed mobile dislocation type
where (dependentState(ph)%compatibility(c,:,s,n,en) < 0.0_pREAL) &
rhoDotFlux(:,topp) = rhoDotFlux(:,topp) &
+ lineLength/geom(ph)%v_0(en)*dependentState(ph)%compatibility(c,:,s,n,en)**2 ! transferring to opposite signed mobile dislocation type
end if
end do
end do
end if; end if
!* FLUX FROM ME TO MY NEIGHBOR
!* This is not considered, if my opposite neighbor has a different constitutive law than nonlocal (still considered for nonlocal law with local properties).
!* Then, we assume, that the opposite(!) neighbor sends an equal amount of dislocations to en.
!* So the net flux in the direction of my neighbor is equal to zero:
!* leaving flux to neighbor == entering flux from opposite neighbor
!* In case of reduced transmissivity, part of the leaving flux is stored as dead dislocation density.
!* That means for an interface of zero transmissivity the leaving flux is fully converted to dead dislocations.
if (opposite_n > 0) then
if (mechanical_plasticity_type(ph_nbr) == MECHANICAL_PLASTICITY_NONLOCAL) then
normal_me2neighbor_defConf = math_det33(Favg) &
* matmul(math_inv33(transpose(Favg)),geom(ph)%n_0(1:3,n,en)) ! normal of the interface in (average) deformed configuration (pointing en => neighbor)
normal_me2neighbor = matmul(transpose(my_Fe), normal_me2neighbor_defConf) &
/ math_det33(my_Fe) ! interface normal in my lattice configuration
a = geom(ph)%a_0(n,en) * norm2(normal_me2neighbor)
normal_me2neighbor = normal_me2neighbor / norm2(normal_me2neighbor) ! normalize the surface normal to unit length
do s = 1,ns
do t = 1,4
c = (t + 1) / 2
if (v_0(s,t) * math_inner(m(1:3,s,t), normal_me2neighbor) > 0.0_pREAL ) then ! flux from en to my neighbor == leaving flux for en (might also be a pure flux from my mobile density to dead density if interface not at all transmissive)
if (v_0(s,t) * v_0_nbr(s,t) >= 0.0_pREAL) then ! no sign change in flux density
transmissivity = sum(dependentState(ph)%compatibility(c,:,s,n,en)**2) ! overall transmissivity from this slip system to my neighbor
else ! sign change in flux density means sign change in stress which does not allow for dislocations to arive at the neighbor
transmissivity = 0.0_pREAL
end if
lineLength = rho_0_sgl_mob(s,t) * v_0(s,t) &
* math_inner(m(1:3,s,t), normal_me2neighbor) * a ! positive line length of mobiles that wants to leave through this interface
rhoDotFlux(s,t) = rhoDotFlux(s,t) - lineLength / geom(ph)%v_0(en) ! subtract dislocation flux from current type
rhoDotFlux(s,t+4) = rhoDotFlux(s,t+4) &
+ lineLength / geom(ph)%v_0(en) * (1.0_pREAL - transmissivity) &
* sign(1.0_pREAL, v_0(s,t)) ! dislocation flux that is not able to leave through interface (because of low transmissivity) will remain as immobile single density at the material point
end if
end do
end do
end if; end if
end do neighbors
end if
end associate
end function rhoDotFlux
!--------------------------------------------------------------------------------------------------
!> @brief Compatibility update
!> @detail Compatibility is defined as normalized product of signed cosine of the angle between the slip
! plane normals and signed cosine of the angle between the slip directions. Only the largest values
! that sum up to a total of 1 are considered, all others are set to zero.
!--------------------------------------------------------------------------------------------------
module subroutine plastic_nonlocal_updateCompatibility(orientation,ph,en)
type(tRotationContainer), dimension(:), intent(in) :: &
orientation ! crystal orientation
integer, intent(in) :: &
ph, en
integer :: &
n, & ! neighbor index
el_nbr, & ! element index of my neighbor
ip_nbr, & ! integration point index of my neighbor
ce_nbr, &
en_nbr, &
ph_nbr, &
ns, & ! number of active slip systems
s1, & ! slip system index (en)
s2 ! slip system index (my neighbor)
real(pREAL), dimension(2,param(ph)%sum_N_sl,param(ph)%sum_N_sl,nCellNeighbors) :: &
my_compatibility ! my_compatibility for current element and ip
real(pREAL) :: &
my_compatibilitySum, &
thresholdValue, &
nThresholdValues
logical, dimension(param(ph)%sum_N_sl) :: &
belowThreshold
type(tRotation) :: mis
associate(prm => param(ph))
ns = prm%sum_N_sl
!*** start out fully compatible
my_compatibility = 0.0_pREAL
forall(s1 = 1:ns) my_compatibility(:,s1,s1,:) = 1.0_pREAL
neighbors: do n = 1,nCellNeighbors
el_nbr = geom(ph)%IPneighborhood(1,n,en)
ip_nbr = geom(ph)%IPneighborhood(2,n,en)
ce_nbr = (el_nbr-1)*discretization_nIPs + ip_nbr
en_nbr = material_entry_phase(1,ce_nbr)
ph_nbr = material_ID_phase(1,ce_nbr)
if (ce_nbr <= 0) then ! free surface
forall(s1 = 1:ns) my_compatibility(:,s1,s1,n) = sqrt(prm%chi_surface)
elseif (ph_nbr /= ph) then ! phase boundary
if (plasticState(ph_nbr)%nonlocal .and. plasticState(ph)%nonlocal) &
forall(s1 = 1:ns) my_compatibility(:,s1,s1,n) = 0.0_pREAL
elseif (prm%chi_GB >= 0.0_pREAL) then ! grain boundary
if (any(dNeq(phase_O_0(ph)%data(en)%asQuaternion(), &
phase_O_0(ph_nbr)%data(en_nbr)%asQuaternion())) .and. &
plasticState(ph_nbr)%nonlocal) &
forall(s1 = 1:ns) my_compatibility(:,s1,s1,n) = sqrt(prm%chi_GB)
else
!* GRAIN BOUNDARY ?
!* Compatibility defined by relative orientation of slip systems:
!* The my_compatibility value is defined as the product of the slip normal projection and the slip direction projection.
!* Its sign is always positive for screws, for edges it has the same sign as the slip normal projection.
!* Since the sum for each slip system can easily exceed one (which would result in a transmissivity larger than one),
!* only values above or equal to a certain threshold value are considered. This threshold value is chosen, such that
!* the number of compatible slip systems is minimized with the sum of the original compatibility values exceeding one.
!* Finally the smallest compatibility value is decreased until the sum is exactly equal to one.
!* All values below the threshold are set to zero.
mis = orientation(ph)%data(en)%misorientation(orientation(ph_nbr)%data(en_nbr))
mySlipSystems: do s1 = 1,ns
neighborSlipSystems: do s2 = 1,ns
my_compatibility(1,s2,s1,n) = math_inner(prm%slip_normal(1:3,s1), &
mis%rotate(prm%slip_normal(1:3,s2))) &
* abs(math_inner(prm%slip_direction(1:3,s1), &
mis%rotate(prm%slip_direction(1:3,s2))))
my_compatibility(2,s2,s1,n) = abs(math_inner(prm%slip_normal(1:3,s1), &
mis%rotate(prm%slip_normal(1:3,s2)))) &
* abs(math_inner(prm%slip_direction(1:3,s1), &
mis%rotate(prm%slip_direction(1:3,s2))))
end do neighborSlipSystems
my_compatibilitySum = 0.0_pREAL
belowThreshold = .true.
do while (my_compatibilitySum < 1.0_pREAL .and. any(belowThreshold))
thresholdValue = maxval(my_compatibility(2,:,s1,n), belowThreshold) ! screws always positive
nThresholdValues = real(count(my_compatibility(2,:,s1,n) >= thresholdValue),pREAL)
where (my_compatibility(2,:,s1,n) >= thresholdValue) belowThreshold = .false.
if (my_compatibilitySum + thresholdValue * nThresholdValues > 1.0_pREAL) &
where (abs(my_compatibility(:,:,s1,n)) >= thresholdValue) &
my_compatibility(:,:,s1,n) = sign((1.0_pREAL - my_compatibilitySum)/nThresholdValues,&
my_compatibility(:,:,s1,n))
my_compatibilitySum = my_compatibilitySum + nThresholdValues * thresholdValue
end do
where(belowThreshold) my_compatibility(1,:,s1,n) = 0.0_pREAL
where(belowThreshold) my_compatibility(2,:,s1,n) = 0.0_pREAL
end do mySlipSystems
end if
end do neighbors
dependentState(ph)%compatibility(:,:,:,:,en) = my_compatibility
end associate
end subroutine plastic_nonlocal_updateCompatibility
!--------------------------------------------------------------------------------------------------
!> @brief Write results to HDF5 output file.
!--------------------------------------------------------------------------------------------------
module subroutine plastic_nonlocal_result(ph,group)
integer, intent(in) :: ph
character(len=*),intent(in) :: group
integer :: ou
associate(prm => param(ph),dst => dependentState(ph),stt=>state(ph))
do ou = 1,size(prm%output)
select case(trim(prm%output(ou)))
case('rho_u_ed_pos')
call result_writeDataset(stt%rho_sgl_mob_edg_pos,group,trim(prm%output(ou)), &
'positive mobile edge density','1/m²', prm%systems_sl)
case('rho_b_ed_pos')
call result_writeDataset(stt%rho_sgl_imm_edg_pos,group,trim(prm%output(ou)), &
'positive immobile edge density','1/m²', prm%systems_sl)
case('rho_u_ed_neg')
call result_writeDataset(stt%rho_sgl_mob_edg_neg,group,trim(prm%output(ou)), &
'negative mobile edge density','1/m²', prm%systems_sl)
case('rho_b_ed_neg')
call result_writeDataset(stt%rho_sgl_imm_edg_neg,group,trim(prm%output(ou)), &
'negative immobile edge density','1/m²', prm%systems_sl)
case('rho_d_ed')
call result_writeDataset(stt%rho_dip_edg,group,trim(prm%output(ou)), &
'edge dipole density','1/m²', prm%systems_sl)
case('rho_u_sc_pos')
call result_writeDataset(stt%rho_sgl_mob_scr_pos,group,trim(prm%output(ou)), &
'positive mobile screw density','1/m²', prm%systems_sl)
case('rho_b_sc_pos')
call result_writeDataset(stt%rho_sgl_imm_scr_pos,group,trim(prm%output(ou)), &
'positive immobile screw density','1/m²', prm%systems_sl)
case('rho_u_sc_neg')
call result_writeDataset(stt%rho_sgl_mob_scr_neg,group,trim(prm%output(ou)), &
'negative mobile screw density','1/m²', prm%systems_sl)
case('rho_b_sc_neg')
call result_writeDataset(stt%rho_sgl_imm_scr_neg,group,trim(prm%output(ou)), &
'negative immobile screw density','1/m²', prm%systems_sl)
case('rho_d_sc')
call result_writeDataset(stt%rho_dip_scr,group,trim(prm%output(ou)), &
'screw dipole density','1/m²', prm%systems_sl)
case('rho_f')
call result_writeDataset(dst%rho_forest,group,trim(prm%output(ou)), &
'forest density','1/m²', prm%systems_sl)
case('v_ed_pos')
call result_writeDataset(stt%v_edg_pos,group,trim(prm%output(ou)), &
'positive edge velocity','m/s', prm%systems_sl)
case('v_ed_neg')
call result_writeDataset(stt%v_edg_neg,group,trim(prm%output(ou)), &
'negative edge velocity','m/s', prm%systems_sl)
case('v_sc_pos')
call result_writeDataset(stt%v_scr_pos,group,trim(prm%output(ou)), &
'positive srew velocity','m/s', prm%systems_sl)
case('v_sc_neg')
call result_writeDataset(stt%v_scr_neg,group,trim(prm%output(ou)), &
'negative screw velocity','m/s', prm%systems_sl)
case('gamma')
call result_writeDataset(stt%gamma,group,trim(prm%output(ou)), &
'plastic shear','1', prm%systems_sl)
case('tau_pass')
call result_writeDataset(dst%tau_pass,group,trim(prm%output(ou)), &
'passing stress for slip','Pa', prm%systems_sl)
end select
end do
end associate
end subroutine plastic_nonlocal_result
!--------------------------------------------------------------------------------------------------
!> @brief populates the initial dislocation density
!--------------------------------------------------------------------------------------------------
subroutine stateInit(ini,phase,Nentries)
type(tInitialParameters) :: &
ini
integer,intent(in) :: &
phase, &
Nentries
integer :: &
e, &
f, &
from, &
upto, &
s
real(pREAL), dimension(2) :: &
rnd
real(pREAL) :: &
meanDensity, &
totalVolume, &
densityBinning, &
minimumIpVolume
associate(stt => state(phase))
if (ini%random_rho_u > 0.0_pREAL) then ! randomly distribute dislocation segments on random slip system and of random type in the volume
totalVolume = sum(geom(phase)%v_0)
minimumIPVolume = minval(geom(phase)%v_0)
densityBinning = ini%random_rho_u_binning / minimumIpVolume ** (2.0_pREAL / 3.0_pREAL)
! fill random material points with dislocation segments until the desired overall density is reached
meanDensity = 0.0_pREAL
do while(meanDensity < ini%random_rho_u)
call random_number(rnd)
e = nint(rnd(1)*real(Nentries,pREAL) + 0.5_pREAL)
s = nint(rnd(2)*real(sum(ini%N_sl),pREAL)*4.0_pREAL + 0.5_pREAL)
meanDensity = meanDensity + densityBinning * geom(phase)%v_0(e) / totalVolume
stt%rho_sgl_mob(s,e) = densityBinning
end do
else ! homogeneous distribution with noise
do f = 1,size(ini%N_sl,1)
from = 1 + sum(ini%N_sl(1:f-1))
upto = sum(ini%N_sl(1:f))
call math_normal(stt%rho_sgl_mob_edg_pos(from:upto,:),ini%rho_u_ed_pos_0(f),ini%sigma_rho_u)
call math_normal(stt%rho_sgl_mob_edg_neg(from:upto,:),ini%rho_u_ed_neg_0(f),ini%sigma_rho_u)
call math_normal(stt%rho_sgl_mob_scr_pos(from:upto,:),ini%rho_u_sc_pos_0(f),ini%sigma_rho_u)
call math_normal(stt%rho_sgl_mob_scr_neg(from:upto,:),ini%rho_u_sc_neg_0(f),ini%sigma_rho_u)
stt%rho_dip_edg(from:upto,:) = ini%rho_d_ed_0(f)
stt%rho_dip_scr(from:upto,:) = ini%rho_d_sc_0(f)
end do
end if
end associate
end subroutine stateInit
!--------------------------------------------------------------------------------------------------
!> @brief calculates kinetics
!--------------------------------------------------------------------------------------------------
pure subroutine kinetics(v, dv_dtau, dv_dtauNS, tau, tauNS, tauThreshold, c, T, ph)
integer, intent(in) :: &
c, & !< dislocation character (1:edge, 2:screw)
ph
real(pREAL), dimension(param(ph)%sum_N_sl), intent(in) :: &
tau, & !< resolved external shear stress (without non Schmid effects)
tauNS, & !< resolved external shear stress (including non Schmid effects)
tauThreshold !< threshold shear stress
real(pREAL), intent(in) :: &
T !< T
real(pREAL), dimension(param(ph)%sum_N_sl), intent(out) :: &
v, & !< velocity
dv_dtau, & !< velocity derivative with respect to resolved shear stress (without non Schmid contributions)
dv_dtauNS !< velocity derivative with respect to resolved shear stress (including non Schmid contributions)
integer :: &
s !< index of my current slip system
real(pREAL) :: &
tauRel_P, &
tauRel_S, &
tauEff, & !< effective shear stress
tPeierls, & !< waiting time in front of a peierls barriers
tSolidSolution, & !< waiting time in front of a solid solution obstacle
dtPeierls_dtau, & !< derivative with respect to resolved shear stress
dtSolidSolution_dtau, & !< derivative with respect to resolved shear stress
lambda_S, & !< mean free distance between two solid solution obstacles
lambda_P, & !< mean free distance between two Peierls barriers
activationVolume_P, & !< volume that needs to be activated to overcome barrier
activationVolume_S, & !< volume that needs to be activated to overcome barrier
activationEnergy_P, & !< energy that is needed to overcome barrier
criticalStress_P, & !< maximum obstacle strength
criticalStress_S !< maximum obstacle strength
v = 0.0_pREAL
dv_dtau = 0.0_pREAL
dv_dtauNS = 0.0_pREAL
associate(prm => param(ph))
do s = 1,prm%sum_N_sl
if (abs(tau(s)) > tauThreshold(s)) then
!* Peierls contribution
tauEff = max(0.0_pREAL, abs(tauNS(s)) - tauThreshold(s))
lambda_P = prm%b_sl(s)
activationVolume_P = prm%w * prm%b_sl(s)**3
criticalStress_P = prm%peierlsStress(s,c)
activationEnergy_P = criticalStress_P * activationVolume_P
tauRel_P = min(1.0_pREAL, tauEff / criticalStress_P)
tPeierls = 1.0_pREAL / prm%nu_a &
* exp(activationEnergy_P / (K_B * T) &
* (1.0_pREAL - tauRel_P**prm%p)**prm%q)
dtPeierls_dtau = merge(tPeierls * prm%p * prm%q * activationVolume_P / (K_B * T) &
* (1.0_pREAL - tauRel_P**prm%p)**(prm%q-1.0_pREAL) * tauRel_P**(prm%p-1.0_pREAL), &
0.0_pREAL, &
tauEff < criticalStress_P)
! Contribution from solid solution strengthening
tauEff = abs(tau(s)) - tauThreshold(s)
lambda_S = prm%b_sl(s) / sqrt(prm%c_sol)
activationVolume_S = prm%f_sol * prm%b_sl(s)**3 / sqrt(prm%c_sol)
criticalStress_S = prm%Q_sol / activationVolume_S
tauRel_S = min(1.0_pREAL, tauEff / criticalStress_S)
tSolidSolution = 1.0_pREAL / prm%nu_a &
* exp(prm%Q_sol / (K_B * T)* (1.0_pREAL - tauRel_S**prm%p)**prm%q)
dtSolidSolution_dtau = merge(tSolidSolution * prm%p * prm%q * activationVolume_S / (K_B * T) &
* (1.0_pREAL - tauRel_S**prm%p)**(prm%q-1.0_pREAL)* tauRel_S**(prm%p-1.0_pREAL), &
0.0_pREAL, &
tauEff < criticalStress_S)
!* viscous glide velocity
tauEff = abs(tau(s)) - tauThreshold(s)
v(s) = sign(1.0_pREAL,tau(s)) &
/ (tPeierls / lambda_P + tSolidSolution / lambda_S + prm%B /(prm%b_sl(s) * tauEff))
dv_dtau(s) = v(s)**2 * (dtSolidSolution_dtau / lambda_S + prm%B / (prm%b_sl(s) * tauEff**2))
dv_dtauNS(s) = v(s)**2 * dtPeierls_dtau / lambda_P
end if
end do
end associate
end subroutine kinetics
!--------------------------------------------------------------------------------------------------
!> @brief returns copy of current dislocation densities from state
!> @details raw values is rectified
!--------------------------------------------------------------------------------------------------
pure function getRho(ph,en) result(rho)
integer, intent(in) :: ph, en
real(pREAL), dimension(param(ph)%sum_N_sl,10) :: rho
associate(prm => param(ph))
rho = reshape(state(ph)%rho(:,en),[prm%sum_N_sl,10])
! ensure positive densities (not for imm, they have a sign)
rho(:,mob) = max(rho(:,mob),0.0_pREAL)
rho(:,dip) = max(rho(:,dip),0.0_pREAL)
where(abs(rho) < max(prm%rho_min/geom(ph)%v_0(en)**(2.0_pREAL/3.0_pREAL),prm%rho_significant)) &
rho = 0.0_pREAL
end associate
end function getRho
!--------------------------------------------------------------------------------------------------
!> @brief returns copy of current dislocation densities from state
!> @details raw values is rectified
!--------------------------------------------------------------------------------------------------
pure function getRho0(ph,en) result(rho_0)
integer, intent(in) :: ph, en
real(pREAL), dimension(param(ph)%sum_N_sl,10) :: rho_0
associate(prm => param(ph))
rho_0 = reshape(state0(ph)%rho(:,en),[prm%sum_N_sl,10])
! ensure positive densities (not for imm, they have a sign)
rho_0(:,mob) = max(rho_0(:,mob),0.0_pREAL)
rho_0(:,dip) = max(rho_0(:,dip),0.0_pREAL)
where (abs(rho_0) < max(prm%rho_min/geom(ph)%v_0(en)**(2.0_pREAL/3.0_pREAL),prm%rho_significant)) &
rho_0 = 0.0_pREAL
end associate
end function getRho0
!--------------------------------------------------------------------------------------------------
!--------------------------------------------------------------------------------------------------
subroutine storeGeometry(ph)
integer, intent(in) :: ph
integer :: ce, nCell
real(pREAL), dimension(:), allocatable :: v_0
real(pREAL), dimension(:,:), allocatable :: a_0, x_0
real(pREAL), dimension(:,:,:), allocatable :: n_0
integer, dimension(:,:,:), allocatable :: neighborhood
nCell = product(shape(IPVolume0))
v_0 = reshape(IPVolume0,[nCell])
a_0 = reshape(IPArea0,[nCellNeighbors,nCell])
x_0 = reshape(discretization_IPcoords,[3,nCell])
n_0 = reshape(IPAreaNormal0,[3,nCellNeighbors,nCell])
neighborhood = reshape(IPneighborhood,[3,nCellNeighbors,nCell])
do ce = 1, size(material_entry_homogenization,1)
if (material_ID_phase(1,ce) == ph) then
geom(ph)%v_0(material_entry_phase(1,ce)) = v_0(ce)
geom(ph)%a_0(:,material_entry_phase(1,ce)) = a_0(:,ce)
geom(ph)%x_0(:,material_entry_phase(1,ce)) = x_0(:,ce)
geom(ph)%n_0(:,:,material_entry_phase(1,ce)) = n_0(:,:,ce)
geom(ph)%IPneighborhood(:,:,material_entry_phase(1,ce)) = neighborhood(:,:,ce)
end if
end do
end subroutine storeGeometry
end submodule nonlocal