DAMASK_EICMD/src/homogenization.f90

476 lines
16 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Denny Tjahjanto, Max-Planck-Institut für Eisenforschung GmbH
!> @brief homogenization manager, organizing deformation partitioning and stress homogenization
!--------------------------------------------------------------------------------------------------
module homogenization
use prec
use math
use constants
use IO
use config
use material
use phase
use discretization
use HDF5
use HDF5_utilities
use result
use crystal
implicit none(type,external)
private
type :: tState
integer :: &
sizeState = 0 !< size of state
! http://stackoverflow.com/questions/3948210
real(pREAL), pointer, dimension(:,:), contiguous :: & !< is basically an allocatable+target, but in a type needs to be pointer
state0, &
state
end type
enum, bind(c); enumerator :: &
THERMAL_UNDEFINED_ID, &
THERMAL_PASS_ID, &
THERMAL_ISOTEMPERATURE_ID
end enum
integer(kind(THERMAL_UNDEFINED_ID)), dimension(:), allocatable :: &
thermal_type !< type of each homogenization
type(tState), allocatable, dimension(:), public :: &
homogState, &
damageState_h
logical, allocatable, dimension(:) :: &
thermal_active, &
damage_active
!--------------------------------------------------------------------------------------------------
! General variables for the homogenization at a material point
real(pREAL), dimension(:,:,:), allocatable, public :: &
homogenization_F !< def grad of IP to be reached at end of FE increment
real(pREAL), dimension(:,:,:), allocatable, public, protected :: &
homogenization_P !< first P--K stress of IP
real(pREAL), dimension(:,:,:,:,:), allocatable, public, protected :: &
homogenization_dPdF !< tangent of first P--K stress at IP
!--------------------------------------------------------------------------------------------------
interface
module subroutine mechanical_init()
end subroutine mechanical_init
module subroutine thermal_init()
end subroutine thermal_init
module subroutine damage_init()
end subroutine damage_init
module subroutine mechanical_partition(subF,ce)
real(pREAL), intent(in), dimension(3,3) :: &
subF
integer, intent(in) :: &
ce
end subroutine mechanical_partition
module subroutine thermal_partition(ce)
integer, intent(in) :: ce
end subroutine thermal_partition
module subroutine damage_partition(ce)
integer, intent(in) :: ce
end subroutine damage_partition
module subroutine mechanical_homogenize(Delta_t,ce)
real(pREAL), intent(in) :: Delta_t
integer, intent(in) :: &
ce !< cell
end subroutine mechanical_homogenize
module subroutine mechanical_result(group_base,ho)
character(len=*), intent(in) :: group_base
integer, intent(in) :: ho
end subroutine mechanical_result
module subroutine damage_result(ho,group)
integer, intent(in) :: ho
character(len=*), intent(in) :: group
end subroutine damage_result
module subroutine thermal_result(ho,group)
integer, intent(in) :: ho
character(len=*), intent(in) :: group
end subroutine thermal_result
module function mechanical_updateState(subdt,subF,ce) result(doneAndHappy)
real(pREAL), intent(in) :: &
subdt !< current time step
real(pREAL), intent(in), dimension(3,3) :: &
subF
integer, intent(in) :: &
ce !< cell
logical, dimension(2) :: doneAndHappy
end function mechanical_updateState
module function homogenization_thermal_active() result(active)
logical :: active
end function homogenization_thermal_active
module function homogenization_mu_T(ce) result(mu)
integer, intent(in) :: ce
real(pREAL) :: mu
end function homogenization_mu_T
module function homogenization_K_T(ce) result(K)
integer, intent(in) :: ce
real(pREAL), dimension(3,3) :: K
end function homogenization_K_T
module function homogenization_f_T(ce) result(f)
integer, intent(in) :: ce
real(pREAL) :: f
end function homogenization_f_T
module subroutine homogenization_thermal_setField(T,dot_T)
real(pREAL), dimension(:), intent(in) :: T, dot_T
end subroutine homogenization_thermal_setField
module function homogenization_damage_active() result(active)
logical :: active
end function homogenization_damage_active
module function homogenization_mu_phi(ce) result(mu)
integer, intent(in) :: ce
real(pREAL) :: mu
end function homogenization_mu_phi
module function homogenization_K_phi(ce) result(K)
integer, intent(in) :: ce
real(pREAL), dimension(3,3) :: K
end function homogenization_K_phi
module function homogenization_f_phi(phi,ce) result(f)
integer, intent(in) :: ce
real(pREAL), intent(in) :: phi
real(pREAL) :: f
end function homogenization_f_phi
module subroutine homogenization_set_phi(phi)
real(pREAL), dimension(:), intent(in) :: phi
end subroutine homogenization_set_phi
end interface
public :: &
homogenization_init, &
homogenization_mechanical_response, &
homogenization_thermal_response, &
homogenization_thermal_active, &
homogenization_mu_T, &
homogenization_K_T, &
homogenization_f_T, &
homogenization_thermal_setfield, &
homogenization_damage_active, &
homogenization_mu_phi, &
homogenization_K_phi, &
homogenization_f_phi, &
homogenization_set_phi, &
homogenization_forward, &
homogenization_result, &
homogenization_restartRead, &
homogenization_restartWrite
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!--------------------------------------------------------------------------------------------------
subroutine homogenization_init()
type(tDict) , pointer :: &
num_homog, &
num_homogGeneric
print'(/,1x,a)', '<<<+- homogenization init -+>>>'; flush(IO_STDOUT)
allocate(homogState (size(material_name_homogenization)))
allocate(damageState_h (size(material_name_homogenization)))
call parseHomogenization()
call mechanical_init()
call thermal_init()
call damage_init()
end subroutine homogenization_init
!--------------------------------------------------------------------------------------------------
!> @brief
!--------------------------------------------------------------------------------------------------
subroutine homogenization_mechanical_response(status,Delta_t,cell_start,cell_end)
integer(kind(STATUS_OK)), intent(out) :: status
real(pREAL), intent(in) :: Delta_t !< time increment
integer, intent(in) :: &
cell_start, cell_end
integer :: &
co, ce, ho, en
logical :: &
converged
logical, dimension(2) :: &
doneAndHappy
status = STATUS_OK
!$OMP PARALLEL DO PRIVATE(en,ho,co,converged,doneAndHappy)
do ce = cell_start, cell_end
en = material_entry_homogenization(ce)
ho = material_ID_homogenization(ce)
call phase_restore(ce,.false.) ! wrong name (is more a forward function)
if (homogState(ho)%sizeState > 0) homogState(ho)%state(:,en) = homogState(ho)%state0(:,en)
if (damageState_h(ho)%sizeState > 0) damageState_h(ho)%state(:,en) = damageState_h(ho)%state0(:,en)
call damage_partition(ce)
doneAndHappy = [.false.,.true.]
convergenceLooping: do while (status == STATUS_OK .and. .not. doneAndHappy(1))
call mechanical_partition(homogenization_F(1:3,1:3,ce),ce)
converged = all([(phase_mechanical_constitutive(Delta_t,co,ce) == STATUS_OK,co=1,homogenization_Nconstituents(ho))])
if (converged) then
doneAndHappy = mechanical_updateState(Delta_t,homogenization_F(1:3,1:3,ce),ce)
converged = all(doneAndHappy)
else
doneAndHappy = [.true.,.false.]
end if
end do convergenceLooping
if (.not. converged) then
if (status == STATUS_OK) print*, ' Cell ', ce, ' failed (mechanics)'
status = STATUS_FAIL_PHASE_MECHANICAL
end if
converged = converged .and. all([(phase_damage_constitutive(Delta_t,co,ce)==STATUS_OK,co=1,homogenization_Nconstituents(ho))])
if (.not. converged) then
if (status == STATUS_OK) print*, ' Cell ', ce, ' failed (damage)'
status = STATUS_FAIL_PHASE_DAMAGE
end if
end do
!$OMP END PARALLEL DO
if (status /= STATUS_OK) return
!$OMP PARALLEL DO PRIVATE(ho)
do ce = cell_start, cell_end
ho = material_ID_homogenization(ce)
do co = 1, homogenization_Nconstituents(ho)
call crystallite_orientations(co,ce)
end do
call mechanical_homogenize(Delta_t,ce)
end do
!$OMP END PARALLEL DO
end subroutine homogenization_mechanical_response
!--------------------------------------------------------------------------------------------------
!> @brief
!--------------------------------------------------------------------------------------------------
subroutine homogenization_thermal_response(status, &
Delta_t,cell_start,cell_end)
integer(kind(STATUS_OK)), intent(out) :: status
real(pREAL), intent(in) :: Delta_t !< time increment
integer, intent(in) :: &
cell_start, cell_end
integer :: &
co, ce, ho
status = STATUS_OK
!$OMP PARALLEL DO PRIVATE(ho)
do ce = cell_start, cell_end
if (status /= STATUS_OK) continue
ho = material_ID_homogenization(ce)
do co = 1, homogenization_Nconstituents(ho)
if (phase_thermal_constitutive(Delta_t,material_ID_phase(co,ce),material_entry_phase(co,ce)) /= STATUS_OK) then
if (status == STATUS_OK) print*, ' Cell ', ce, ' failed (thermal)'
status = STATUS_FAIL_PHASE_THERMAL
end if
end do
end do
!$OMP END PARALLEL DO
end subroutine homogenization_thermal_response
!--------------------------------------------------------------------------------------------------
!> @brief writes homogenization results to HDF5 output file
!--------------------------------------------------------------------------------------------------
subroutine homogenization_result()
integer :: ho
character(len=:), allocatable :: group_base,group
call result_closeGroup(result_addGroup('current/homogenization/'))
do ho=1,size(material_name_homogenization)
group_base = 'current/homogenization/'//trim(material_name_homogenization(ho))
call result_closeGroup(result_addGroup(group_base))
call mechanical_result(group_base,ho)
if (damage_active(ho)) then
group = trim(group_base)//'/damage'
call result_closeGroup(result_addGroup(group))
call damage_result(ho,group)
end if
if (thermal_active(ho)) then
group = trim(group_base)//'/thermal'
call result_closeGroup(result_addGroup(group))
call thermal_result(ho,group)
end if
end do
end subroutine homogenization_result
!--------------------------------------------------------------------------------------------------
!> @brief Forward data after successful increment.
! ToDo: Any guessing for the current states possible?
!--------------------------------------------------------------------------------------------------
subroutine homogenization_forward()
integer :: ho
do ho = 1, size(material_name_homogenization)
homogState (ho)%state0 = homogState (ho)%state
if (damageState_h(ho)%sizeState > 0) &
damageState_h(ho)%state0 = damageState_h(ho)%state
end do
end subroutine homogenization_forward
!--------------------------------------------------------------------------------------------------
!--------------------------------------------------------------------------------------------------
subroutine homogenization_restartWrite(fileHandle)
integer(HID_T), intent(in) :: fileHandle
integer(HID_T), dimension(2) :: groupHandle
integer :: ho
groupHandle(1) = HDF5_addGroup(fileHandle,'homogenization')
do ho = 1, size(material_name_homogenization)
groupHandle(2) = HDF5_addGroup(groupHandle(1),material_name_homogenization(ho))
call HDF5_write(homogState(ho)%state,groupHandle(2),'omega_mechanical') ! ToDo: should be done by mech
if (damageState_h(ho)%sizeState > 0) &
call HDF5_write(damageState_h(ho)%state,groupHandle(2),'omega_damage') ! ToDo: should be done by mech
call HDF5_closeGroup(groupHandle(2))
end do
call HDF5_closeGroup(groupHandle(1))
end subroutine homogenization_restartWrite
!--------------------------------------------------------------------------------------------------
!--------------------------------------------------------------------------------------------------
subroutine homogenization_restartRead(fileHandle)
integer(HID_T), intent(in) :: fileHandle
integer(HID_T), dimension(2) :: groupHandle
integer :: ho
groupHandle(1) = HDF5_openGroup(fileHandle,'homogenization')
do ho = 1, size(material_name_homogenization)
groupHandle(2) = HDF5_openGroup(groupHandle(1),material_name_homogenization(ho))
call HDF5_read(homogState(ho)%state0,groupHandle(2),'omega_mechanical') ! ToDo: should be done by mech
if (damageState_h(ho)%sizeState > 0) &
call HDF5_read(damageState_h(ho)%state0,groupHandle(2),'omega_damage') ! ToDo: should be done by mech
call HDF5_closeGroup(groupHandle(2))
end do
call HDF5_closeGroup(groupHandle(1))
end subroutine homogenization_restartRead
!--------------------------------------------------------------------------------------------------
!> @brief parses the homogenization part from the material configuration
!--------------------------------------------------------------------------------------------------
subroutine parseHomogenization
type(tDict), pointer :: &
material_homogenization, &
homog, &
homogThermal, &
homogDamage
integer :: h
material_homogenization => config_material%get_dict('homogenization')
allocate(thermal_type(size(material_name_homogenization)),source=THERMAL_UNDEFINED_ID)
allocate(thermal_active(size(material_name_homogenization)),source=.false.)
allocate(damage_active(size(material_name_homogenization)),source=.false.)
do h=1, size(material_name_homogenization)
homog => material_homogenization%get_dict(h)
if (homog%contains('thermal')) then
homogThermal => homog%get_dict('thermal')
select case (homogThermal%get_asStr('type'))
case('pass')
thermal_type(h) = THERMAL_PASS_ID
thermal_active(h) = .true.
case('isotemperature')
thermal_type(h) = THERMAL_ISOTEMPERATURE_ID
thermal_active(h) = .true.
case default
call IO_error(500,ext_msg=homogThermal%get_asStr('type'))
end select
end if
if (homog%contains('damage')) then
homogDamage => homog%get_dict('damage')
select case (homogDamage%get_asStr('type'))
case('pass')
damage_active(h) = .true.
case default
call IO_error(500,ext_msg=homogDamage%get_asStr('type'))
end select
end if
end do
end subroutine parseHomogenization
end module homogenization