Grain boundary elements for nucleation code

This commit is contained in:
achalhp 2024-03-16 15:52:41 +05:30
parent 46da81c77d
commit 117135de08
3 changed files with 119 additions and 42 deletions

View File

@ -110,12 +110,12 @@ submodule(phase) mechanical
dLp_dFi !< derivative of Lp with respect to Fi
end subroutine plastic_LpAndItsTangents
module subroutine plastic_KinematicJump(ph, en, Jump_occurr,deltaFp)
module subroutine plastic_KinematicJump(ph, en, twinJump,deltaFp)
integer, intent(in) :: &
ph, &
en
logical , intent(out) :: &
Jump_occurr
twinJump
real(pReal), dimension(3,3), intent(out) :: &
deltaFp
end subroutine plastic_KinematicJump
@ -1019,7 +1019,7 @@ module function phase_mechanical_constitutive(Delta_t,co,ce) result(status)
formerStep
integer :: &
ph, en, sizeDotState, o, sd
logical :: todo, FpJumped
logical :: todo, twinJump
real(pREAL) :: stepFrac,step
real(pREAL), dimension(3,3) :: &
Fp0, &
@ -1052,24 +1052,25 @@ module function phase_mechanical_constitutive(Delta_t,co,ce) result(status)
! achal calling Kinematic DeltaFp here
!** Starting to implement changes for accommodating large shear and reorientation caused by twinning**
!if(.not. FpJumped .and. NiterationStressLp>1) then !Achal: Reason for this if statement?
call plastic_KinematicJump(ph, en, FpJumped,deltaFp)
!if(FpJumped) write(6,*) 'element jumped', en
!if(FpJumped) then
!Fp0 = matmul(deltaFp,phase_mechanical_Fp0(ph)%data(1:3,1:3,en))
call plastic_KinematicJump(ph, en, twinJump, deltaFp)
if(twinJump) then
write(6,*) 'element jumped', deltaFp
write(6,*)'element',en
Fp0 = matmul(deltaFp,phase_mechanical_Fp0(ph)%data(1:3,1:3,en))
o = plasticState(ph)%offsetDeltaState
sd = plasticState(ph)%sizeDeltaState
!update current state by jump
!plasticState(ph)%state(o+1:o+sd,en) = plasticState(ph)%state(o+1:o+sd,en) &
!+ plasticState(ph)%deltaState(o+1:o+sd,en)
plasticState(ph)%state(o+1:o+sd,en) = plasticState(ph)%state(o+1:o+sd,en) &
+ plasticState(ph)%deltaState(o+1:o+sd,en)
!store jumped state as initial value for next iteration
!plasticState(ph)%state0(o+1:o+sd,en) = plasticState(ph)%state(o+1:o+sd,en)
!store jumped state as initial value for for substate, partitioned state as well
!endif
endif
if (status == STATUS_OK) then
formerStep = step

View File

@ -473,20 +473,20 @@ end function plastic_active
!3) -(last sampled volume fraction) to restart sampling
!4) logical true if twinning possible/needed, false if not occurring/not needed
!--------------------------------------------------------------------------------------------------
subroutine plastic_KinematicJump(ph, en, Jump_occurr,deltaFp)
subroutine plastic_KinematicJump(ph, en, twinJump,deltaFp)
integer, intent(in) :: &
ph, &
en
logical , intent(out) :: &
Jump_occurr
twinJump
real(pReal), dimension(3,3), intent(out) :: &
deltaFp
plasticType: select case (mechanical_plasticity_type(ph))
case (MECHANICAL_PLASTICITY_PHENOPOWERLAW) plasticType
call plastic_kinematic_deltaFp(ph,en, Jump_occurr,deltaFp)
call plastic_kinematic_deltaFp(ph,en, twinJump,deltaFp)
end select plasticType

View File

@ -5,6 +5,22 @@
!> @brief phenomenological crystal plasticity formulation using a powerlaw fitting
!--------------------------------------------------------------------------------------------------
submodule(phase:plastic) phenopowerlaw
use geometry_plastic_nonlocal, only: &
nCellNeighbors => geometry_plastic_nonlocal_nIPneighbors, &
IPneighborhood => geometry_plastic_nonlocal_IPneighborhood, &
IPvolume0 => geometry_plastic_nonlocal_IPvolume0, &
IParea0 => geometry_plastic_nonlocal_IParea0, &
IPareaNormal0 => geometry_plastic_nonlocal_IPareaNormal0, &
geometry_plastic_nonlocal_disable
type :: tGeometry
real(pREAL), dimension(:), allocatable :: v_0
real(pREAL), dimension(:,:), allocatable :: a_0, x_0
real(pREAL), dimension(:,:,:), allocatable :: n_0
integer, dimension(:,:,:), allocatable :: IPneighborhood
end type tGeometry
type(tGeometry), dimension(:), allocatable :: geom
type :: tParameters
real(pREAL), allocatable, dimension(:) :: &
@ -114,6 +130,7 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
phases => config_material%get_dict('phase')
allocate(geom(phases%length))
allocate(param(phases%length))
allocate(indexDotState(phases%length))
allocate(state(phases%length))
@ -271,6 +288,13 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
call phase_allocateState(plasticState(ph),Nmembers,sizeState,sizeDotState,sizeDeltaState)
deallocate(plasticState(ph)%dotState) ! ToDo: remove dotState completely
allocate(geom(ph)%v_0(Nmembers))
allocate(geom(ph)%a_0(nCellNeighbors,Nmembers))
allocate(geom(ph)%x_0(3,Nmembers))
allocate(geom(ph)%n_0(3,nCellNeighbors,Nmembers))
allocate(geom(ph)%IPneighborhood(3,nCellNeighbors,Nmembers))
call storeGeometry(ph)
!--------------------------------------------------------------------------------------------------
! state aliases and initialization
startIndex = 1
@ -382,13 +406,13 @@ pure module subroutine phenopowerlaw_LpAndItsTangent(Lp,dLp_dMp,Mp,ph,en)
+ ddot_gamma_dtau_sl(i) * prm%P_sl(k,l,i) * P_nS(m,n,i)
end do slipSystems
call kinetics_tw(Mp,ph,en,dot_gamma_tw,fdot_twin, ddot_gamma_dtau_tw)
twinSystems: do i = 1, prm%sum_N_tw
Lp = Lp + dot_gamma_tw(i)*prm%P_tw(1:3,1:3,i)
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) &
+ ddot_gamma_dtau_tw(i)*prm%P_tw(k,l,i)*prm%P_tw(m,n,i)
end do twinSystems
!call kinetics_tw(Mp,ph,en,dot_gamma_tw,fdot_twin, ddot_gamma_dtau_tw)
!twinSystems: do i = 1, prm%sum_N_tw
! Lp = Lp + dot_gamma_tw(i)*prm%P_tw(1:3,1:3,i)
! forall (k=1:3,l=1:3,m=1:3,n=1:3) &
! dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) &
! + ddot_gamma_dtau_tw(i)*prm%P_tw(k,l,i)*prm%P_tw(m,n,i)
!end do twinSystems
end associate
@ -471,16 +495,12 @@ module subroutine plastic_phenopowerlaw_deltaState(ph,en)
twin_var = maxloc(stt%f_twin(:,en),dim=1)
!write(6,*)'twin_var',twin_var
call plastic_kinematic_deltaFp(ph,en,twinJump,deltaFp)
!write(6,*)'twinJump',twinJump
if(twinJump) then
!write(6,*)'el',en
!write(6,*)'twinJump',en
dlt%f_twin(:,en) = 0.0_pReal - stt%f_twin(:,en)
dlt%fmc_twin(:,en) = 0.0_pReal - stt%fmc_twin(:,en)
dlt%frozen(en) = 1.0_pReal - stt%frozen(en)
write(6,*)'frozen',en,dlt%frozen(en),stt%frozen(en)
dlt%variant_twin(en) = twin_var !- stt%variant_twin(en)
endif
@ -505,9 +525,9 @@ module subroutine plastic_kinematic_deltaFp(ph,en,twinJump,deltaFp)
integer :: &
n, & ! neighbor index
neighbor_e, & ! element index of my neighbor
neighbor_i, & ! integration point index of my neighbor
neighbor_me, &
neighbor_phase
neighbor_ip, & ! integration point index of my neighbor
neighbor_en, &
neighbor_ph
real(pREAL) :: &
random, &
@ -525,25 +545,48 @@ module subroutine plastic_kinematic_deltaFp(ph,en,twinJump,deltaFp)
associate(prm => param(ph), stt => state(ph), dlt => deltastate(ph))
twin_var = maxloc(stt%f_twin(:,en),dim=1)
!write(6,*) 'neighbor_el', geom(ph)%IPneighborhood(1,1,512)
!write(6,*) 'neighbor_el', geom(ph)%IPneighborhood(1,2,512)
!write(6,*) 'neighbor_el', geom(ph)%IPneighborhood(1,3,512)
!write(6,*) 'neighbor_el', geom(ph)%IPneighborhood(1,4,512)
!write(6,*) 'neighbor_el', geom(ph)%IPneighborhood(1,5,512)
!write(6,*) 'neighbor_el', geom(ph)%IPneighborhood(1,6,512)
!write(6,*) 'material_ID_phase', material_entry_phase(1,321)
!write(6,*) 'material_ID_phase', material_entry_phase(1,69)
!write(6,*) 'material_ID_phase', material_entry_phase(1,247)
!write(6,*) 'material_ID_phase', material_entry_phase(1,142)
!write(6,*) 'material_ID_phase', material_entry_phase(1,426)
!write(6,*) 'material_ID_phase', material_entry_phase(1,358)
!write(6,*) 'material_ID_phase', material_entry_phase(1,214)
!neighborloop1: do n = 1, ncellneighbors
! neighbor_e = geom(ph)%IPneighborhood(1,n,en)
! neighbor_ip = geom(ph)%IPneighborhood(1,n,en)
! neighbor_ph = material_ID_phase(1,(neighbor_e-1)*discretization_nIPs + neighbor_ip)
! neighbor_en = material_entry_phase(1,(neighbor_e-1)*discretization_nIPs + neighbor_ip)
!write(6,*)'twinned neighbors', stt%variant_twin(neighbor_e)
!end do neighborloop1
call random_number(random)
Ability_Nucleation: if(stt%f_twin(twin_var,en)>(stt%fmc_twin(twin_var,en)+prm%checkstep(twin_var))) then
stt%fmc_twin(twin_var,en) = stt%fmc_twin(twin_var,en)+prm%checkstep(twin_var)
Success_Nucleation: if (random <= stt%f_twin(twin_var,en)) then ! Instead of sum take max
write(6,*)'element twinned',en,'random',random,'variant',twin_var,'volume fraction', stt%f_twin(twin_var,en)
twinJump = .true.
deltaFp = prm%CorrespondenceMatrix(:,:,twin_var)
!write(6,*) twinJump
!dlt%f_twin(:,en) = 0.0_pReal - stt%f_twin(:,en)
!dlt%fmc_twin(:,en) = 0.0_pReal - stt%fmc_twin(:,en)
!dlt%frozen(en) = 1.0_pReal - stt%frozen(en)
!write(6,*)'frozen',en,dlt%frozen(en),stt%frozen(en)
!dlt%variant_twin(en) = twin_var !- stt%variant_twin(en) ! Achal LHS is real, RHS integer ! why this equation?
endif Success_Nucleation
do n = 1, ncellneighbors
neighbor_e = geom(ph)%IPneighborhood(1,n,en)
endif Ability_Nucleation
if (any(dNeq(phase_O_0(ph)%data(en)%asQuaternion(),phase_O_0(ph)%data(neighbor_e)%asQuaternion()))) then
Ability_Nucleation: if(stt%f_twin(twin_var,en)>(stt%fmc_twin(twin_var,en)+prm%checkstep(twin_var))) then
stt%fmc_twin(twin_var,en) = stt%fmc_twin(twin_var,en)+prm%checkstep(twin_var)
Success_Nucleation: if (random <= stt%f_twin(twin_var,en)) then
twinJump = .true.
deltaFp = prm%CorrespondenceMatrix(:,:,twin_var)
!write(6,*)'en',en
!write(6,*)twinJump
endif Success_Nucleation
endif Ability_Nucleation
endif
end do
end associate
@ -700,4 +743,37 @@ pure subroutine kinetics_tw(Mp,ph,en,&
end subroutine kinetics_tw
!--------------------------------------------------------------------------------------------------
!--------------------------------------------------------------------------------------------------
subroutine storeGeometry(ph)
integer, intent(in) :: ph
integer :: ce, nCell
real(pREAL), dimension(:), allocatable :: v_0
real(pREAL), dimension(:,:), allocatable :: a_0, x_0
real(pREAL), dimension(:,:,:), allocatable :: n_0
integer, dimension(:,:,:), allocatable :: neighborhood
nCell = product(shape(IPVolume0))
v_0 = reshape(IPVolume0,[nCell])
a_0 = reshape(IPArea0,[nCellNeighbors,nCell])
x_0 = reshape(discretization_IPcoords,[3,nCell])
n_0 = reshape(IPAreaNormal0,[3,nCellNeighbors,nCell])
neighborhood = reshape(IPneighborhood,[3,nCellNeighbors,nCell])
do ce = 1, size(material_entry_homogenization,1)
if (material_ID_phase(1,ce) == ph) then
geom(ph)%v_0(material_entry_phase(1,ce)) = v_0(ce)
geom(ph)%a_0(:,material_entry_phase(1,ce)) = a_0(:,ce)
geom(ph)%x_0(:,material_entry_phase(1,ce)) = x_0(:,ce)
geom(ph)%n_0(:,:,material_entry_phase(1,ce)) = n_0(:,:,ce)
geom(ph)%IPneighborhood(:,:,material_entry_phase(1,ce)) = neighborhood(:,:,ce)
end if
end do
end subroutine storeGeometry
end submodule phenopowerlaw