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What is a Simulator?

❖ A simulator is a software tool used in research to model and emulate the 

behavior of systems or specific components.

❖ Simulators replicate the functionality and performance characteristics of the 

target architecture, enabling researchers to run software workloads and 

observe system behavior. 
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Why do we need Simulators?

❖ It serves as a cost-effective alternative to physically designing new systems, 

allowing researchers to experiment and analyze various architectural ideas.

❖ This enables iterative refinement of architectural designs, hypothesis testing, 

and performance optimization.
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About Tejas
❖ Tejas Simulator® is an open-source, Java-based multicore architectural 

simulator built by the Srishti research group, IIT Delhi. It includes support for 
Java applications simulation, multicore simulation, cache coherence, NUCA 
protocols, and power simulation.

❖ It has an extremely modular component-oriented design, and it is easy to add 
new features.

❖ Tejas simulates the x86 ISA (32 and 64 bits). It is easy to add support for 
other ISAs as well. Simulation speeds achieved by Tejas are at par, if not 
better than most open source simulators.
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What is an Emulator?   

An emulator is a software or hardware

tool that enables a computer system to

imitate the behavior of another computer

system or device, allowing software

designed for one system to run on a 

different system by providing a virtual 

environment.
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System Architecture Of Tejas
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Communicating the Trace to the Simulator
The application threads run in parallel, and potentially generate gigabytes of data per second. 

It is necessary to send all of this data to Tejas using a high throughput channel. Options that 

were evaluated are

❖ Network sockets

❖ Memory mapped files

❖ Shared memory
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Inter-process Communication Mechanisms
❖ Sockets are the slowest (10 MBps). This is 

because they make costly system calls to 
transfer data across the processes, and 
buffering is done by the Kernel.

❖ For high throughput, shared memory is the 
best option (24 MBps).

❖ Communication with memory mapped files 
is slower, because we need to synchronize 
data with the hard disk, or the disk cache in 

         main memory.
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VISA (Virtual Instruction Set Architecture) 

❖ The VISA instruction set is fairly abstract, and it has sufficient information to 

perform a timing simulation. 

❖ It is not concerned with different behavioral aspects of the instruction set. 

❖ Almost all major architectural simulators break down emulated instructions 

into a simpler instruction set.
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VISA (Virtual Instruction Set Architecture)

Types of operands supported
➢ integer register

➢ floating point register 

➢ immediate value 

➢ memory operand
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VISA (Virtual Instruction Set Architecture)

Types of operations supported on integer and floating point operands
➢ ALU, Multiplication and Division. 

➢ Load can fetch a value from memory into an integer or floating point register. 

➢ Jump represents an unconditional transfer control to a different point in the program, whereas 

branch uses a conditional statement.
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Translator

❖ The translator module in the simulator is responsible for mapping different 
instruction sets to VISA. 

❖ To optimize performance, the mapping focuses on commonly used 
instructions and skips rare instructions that are not architecturally significant. 

❖ The design of the simulator prioritizes simplicity and scalability, but it ensures 
correctness by executing the program on a separate emulator or native 
machine. 
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Measure completeness of Translator

❖ Static Coverage

➢ Static Coverage of the translator is the fraction of instructions in the object executable that 
could be translated into VISA.

❖ Dynamic Coverage

➢ Dynamic Coverage of the simulator to the fraction of dynamically executed instructions that 
were translated to VISA.

Meenakshi Atkade



Architecture Specification

Modular Structure

Tejas is designed as a modular system, allowing for easy addition of new features 
or modifications. This means that new types of pipelines, branch predictors, cache 
replacement policies, network-on-chip (NOC) topologies, and routing algorithms 
can be integrated into Tejas without significant challenges.
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Architecture Specification

Scalability: 

Tejas can simulate systems with varying numbers of cores. Extensive experiments 
have been conducted with 128-core systems without encountering significant 
performance issues. This scalability demonstrates Tejas' ability to handle 
large-scale simulations effectively.
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Architecture Specification

Configurability: 

Tejas offers high configurability for different components. Cores are implemented 
as pipelines with private cache memory, and various types of pipelines can be 
chosen based on the requirements. The memory system can be specified with 
great flexibility, allowing customization according to specific needs. The NOC 
implementation supports multiple topologies and routing algorithms, providing 
options for efficient interconnect design.
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Pipeline

Tejas provides two pipeline types

❖ Multi-Issue In-Order
❖ Out-of-Order
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Features Common to Both Pipelines

❖ A unified pipeline interface exposed to the rest of the system

➢ A queue of instructions forms the input to the pipeline. The translator feeds instructions into 
this queue.

➢ A function that describes the pipeline's one cycle operation. This function is called in the 
principal simulation loop, where the global time is advanced by one cycle in each iteration.

❖ Branch predictor

➢ The different predictors provided are Always Taken, Always Not Taken, Bimodal, GAg, GAp, 
PAg, PAp, GShare, and tournament predictors.

➢ New predictors can be easily added.
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In-order Pipeline
❖ Instruction Fetch 

● An instruction is fetched from the input queue (that is filled by the translator). A request to the 

i-cache is made, the address equal to the program counter of the instruction. 

● Meanwhile, the instruction is placed in a fixed size buffer called the iCacheBuffer. The 

instruction resides here until the i-cache responds. 

● Once it does, the entry from the iCacheBuffer is removed, and the instruction fetch is deemed 

complete.
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In-order Pipeline
❖ Instruction Decode 

● An instruction stays in the decode stage until both its source operands are ready, and the 

corresponding functional unit is available. 

● Once available, depending on the type of operation, the destination register's time when ready 

is set. For a load instruction, whose latency cannot be determined at decode time, the time 

when ready is set to infinity. 

● Branch prediction is performed in the decode stage -- a mis-prediction results in a penalty of 

further instruction fetches being stalled for a predetermined number of cycles.
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In-order Pipeline

❖ Execute Stage An instruction occupies the execute stage until the 

corresponding functional unit completes.

❖ Memory Stage If a load instruction, it occupies this stage until the memory 

system responds. The corresponding destination register's time when ready is 

set to the current time when the load completes.

❖ Write-back Stage Simulated as a 1 cycle operation.
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Multi-issue In-order Pipeline
❖ The width of the pipeline can be more than 1 (set <IssueWidth> tag in the 

configuration file). The architecture implemented is based on the Intel Pentium 

processor (Alpert et. al., 1993). 

❖ Multiple instructions can be processed by a stage in 1 cycle. This processing 

happens in-order, brought about by modeling the latches between stages as circular 

queues of size equal to the pipeline width. All types of hazards are strictly handled.
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Out-of-Order Pipeline
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Out-of-Order Pipeline
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Instruction Fetch

❖ An instruction is fetched from the input queue (that is filled by the translator). 

❖ A request to the i-cache is made, the address equal to the program counter of 

the instruction. 

❖ Meanwhile, the instruction is placed in a fixed size buffer called the 

iCacheBuffer. 

❖ The instruction resides here until the i-cache responds. Once it does, the entry 

from the iCacheBuffer is removed, and the instruction fetch is deemed 

complete.
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Instruction Decode 

❖ Once fetched, “instruction decode” is simulated. Again, since all details are 

known, only timing is simulated by advancing the clock. 

❖ A Reorder Buffer entry and a Load-Store Queue entry (if memory operation) 

are made at this point. 

❖ Unavailability of free entries causes the pipeline to stall till entries are 

available.
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Rename

❖ An available physical register is assigned to the destination operand. 

Unavailability causes the pipeline to stall. 

❖ The physical registers corresponding to the source operands are determined, 

and their availability, that is, whether or not their values are available in the 

register file, is ascertained. 

❖ The rename logic is made up of a register alias table (RAT) and a list of 

available registers.
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Instruction Window Push 

❖ The next stage involves the creation of an Instruction Window entry. 

Unavailability causes pipeline stalling. 

❖ The size of the Instruction Window, Reorder Buffer and Load-Store Queue can 

be specified in the configuration file.
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Instruction Select

❖ The select logic, in every cycle, processes the entries in the IW, looking for 

ready instructions. If the operands of an instruction in the Instruction Window 

are available, and a functional unit that it can execute on is available, the 

instruction is issued for execution. 

❖ The issue width can be set in the configuration file. The IW entries are 

processed in-order -- so if more than issue width number of instructions are 

found ready, the ones that entered the window earlier are given preference.
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Execute

❖ The instruction stays in the execute stage until the execution completes. 

Based on the type of operation, execution times vary -- upon issue, an event 

signalling completion of execution is scheduled for n cycles from the current 

time, where n is the latency of the corresponding functional unit. 

❖ The latency of the functional units can be set in the configuration file. A load 

instruction can be serviced through load-store forwarding, if a store to the 

same address occupies an earlier position in the queue.
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Wake-up

❖ Once execution 
completes, the 
instructions waiting for 
the result (dependent 
instructions) are woken up 
to begin execution in the 
very next cycle.
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Write-back

❖ The register 
corresponding to the 
destination operand is 
marked ready.



Commit

❖ The last stage is the commit of the instruction. First, if the instruction was a 
branch, a prediction is performed. The prediction is compared with the actual 
outcome. If they differ, then the penalty for misprediction is simulated by 
stalling all stages of the pipeline for a pre-specified (in the configuration file) 
number of cycles. 

❖ If the instruction being committed is a store, the Load-Store Queue is 
intimated that it may allow the value to be written to the memory hierarchy.
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Wake-up Select Logic 

❖ Wake-up Select logic allows an instruction j waiting for instruction i’s result, to 

begin execution in the immediately next cycle after instruction i completes 

execution. When instruction i completes, it wakes up all dependent 

instructions. Its result is forwarded to the dependent instruction through the 

by-pass path, essentially storage associated with the functional units.

Meenakshi Atkade



Wake-up Select Logic 

❖ The wake-up signal is modelled as an event, “Broadcast Event”, as its time cannot be 

statically determined. In simulation, Select is performed before the events are 

processed. Therefore, the broadcast event is scheduled at the same time as the 

execution complete event. Doing this would set the availability of the operand in this 

cycle (the cycle when the producing instruction completed execution). This 

instruction then becomes a candidate for selection in the next cycle.
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Two cases exist that require special handling

❖ Suppose the consuming instruction j was to be selected for execution in the 

same cycle (begins execution in the next cycle) as when instruction i 

completed execution. This isn’t possible with the above described solution, as 

the wake-up is performed in the same cycle as i’s completion. The selection 

can happen only in the next cycle, and the execution would thus begin in the 

cycle after that.
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Two cases exist that require special handling

❖ Suppose the consuming instruction j is in the rename stage when the 

producing instruction i completes execution. j looks at the register file, and 

deems it’s operand unavailable. The broadcast signal sent by i touches only 

the instruction window, and is thus not seen by j. Subsequently, j enters the 

instruction window, and i updates the register file. Effectively, j has missed the 

wake-up signal and thus, remains perpetually in the pipeline.
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Simultaneous Multi-Threading (SMT)

❖ The out-of-order pipeline is capable of simultaneous multi-threading. The 
pipeline is provided with a decode width (configurable) number of input 
queues that the translator can populate -- each queue corresponds to one 
thread. 

❖ The pipeline reads from these queues in round-robin fashion -- one queue 
each cycle. Each instruction has a thread id field to help distinguish it when 
data dependencies are handled. When one thread faces a branch 
misprediction, all threads are stalled for the predefined penalty period.
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