
System Architecture Of Tejas
Meenakshi Atkade

Overview

❖ What is a simulator?

❖ Why do we need a simulator?

❖ What is an emulator?

❖ System Architecture of Tejas

❖ Application of tejas

❖ Conclusion

Meenakshi Atkade

What is a Simulator?

❖ A simulator is a software tool used in research to model and emulate the

behavior of systems or specific components.

❖ Simulators replicate the functionality and performance characteristics of the

target architecture, enabling researchers to run software workloads and

observe system behavior.

Meenakshi Atkade

Why do we need Simulators?

❖ It serves as a cost-effective alternative to physically designing new systems,

allowing researchers to experiment and analyze various architectural ideas.

❖ This enables iterative refinement of architectural designs, hypothesis testing,

and performance optimization.

Meenakshi Atkade

About Tejas
❖ Tejas Simulator® is an open-source, Java-based multicore architectural

simulator built by the Srishti research group, IIT Delhi. It includes support for
Java applications simulation, multicore simulation, cache coherence, NUCA
protocols, and power simulation.

❖ It has an extremely modular component-oriented design, and it is easy to add
new features.

❖ Tejas simulates the x86 ISA (32 and 64 bits). It is easy to add support for
other ISAs as well. Simulation speeds achieved by Tejas are at par, if not
better than most open source simulators.

Meenakshi Atkade

What is an Emulator?

An emulator is a software or hardware

tool that enables a computer system to

imitate the behavior of another computer

system or device, allowing software

designed for one system to run on a

different system by providing a virtual

environment.

Meenakshi Atkade

System Architecture Of Tejas

Fuse

Static Micro-Ops

Dy
na

m
ic

Fuse

Binary
Executable

Pin

Translator

Translator

Pipeline

Statistics

Network on
Chip

Memory System

M
ic

ro
-O

ps

Meenakshi Atkade

Communicating the Trace to the Simulator
The application threads run in parallel, and potentially generate gigabytes of data per second.

It is necessary to send all of this data to Tejas using a high throughput channel. Options that

were evaluated are

❖ Network sockets

❖ Memory mapped files

❖ Shared memory

Meenakshi Atkade

Inter-process Communication Mechanisms
❖ Sockets are the slowest (10 MBps). This is

because they make costly system calls to
transfer data across the processes, and
buffering is done by the Kernel.

❖ For high throughput, shared memory is the
best option (24 MBps).

❖ Communication with memory mapped files
is slower, because we need to synchronize
data with the hard disk, or the disk cache in

 main memory.

Meenakshi Atkade

VISA (Virtual Instruction Set Architecture)

❖ The VISA instruction set is fairly abstract, and it has sufficient information to

perform a timing simulation.

❖ It is not concerned with different behavioral aspects of the instruction set.

❖ Almost all major architectural simulators break down emulated instructions

into a simpler instruction set.

Meenakshi Atkade

VISA (Virtual Instruction Set Architecture)

Types of operands supported
➢ integer register

➢ floating point register

➢ immediate value

➢ memory operand

Meenakshi Atkade

VISA (Virtual Instruction Set Architecture)

Types of operations supported on integer and floating point operands
➢ ALU, Multiplication and Division.

➢ Load can fetch a value from memory into an integer or floating point register.

➢ Jump represents an unconditional transfer control to a different point in the program, whereas

branch uses a conditional statement.

Meenakshi Atkade

Translator

❖ The translator module in the simulator is responsible for mapping different
instruction sets to VISA.

❖ To optimize performance, the mapping focuses on commonly used
instructions and skips rare instructions that are not architecturally significant.

❖ The design of the simulator prioritizes simplicity and scalability, but it ensures
correctness by executing the program on a separate emulator or native
machine.

Meenakshi Atkade

Measure completeness of Translator

❖ Static Coverage

➢ Static Coverage of the translator is the fraction of instructions in the object executable that
could be translated into VISA.

❖ Dynamic Coverage

➢ Dynamic Coverage of the simulator to the fraction of dynamically executed instructions that
were translated to VISA.

Meenakshi Atkade

Architecture Specification

Modular Structure

Tejas is designed as a modular system, allowing for easy addition of new features
or modifications. This means that new types of pipelines, branch predictors, cache
replacement policies, network-on-chip (NOC) topologies, and routing algorithms
can be integrated into Tejas without significant challenges.

Meenakshi Atkade

Architecture Specification

Scalability:

Tejas can simulate systems with varying numbers of cores. Extensive experiments
have been conducted with 128-core systems without encountering significant
performance issues. This scalability demonstrates Tejas' ability to handle
large-scale simulations effectively.

Meenakshi Atkade

Architecture Specification

Configurability:

Tejas offers high configurability for different components. Cores are implemented
as pipelines with private cache memory, and various types of pipelines can be
chosen based on the requirements. The memory system can be specified with
great flexibility, allowing customization according to specific needs. The NOC
implementation supports multiple topologies and routing algorithms, providing
options for efficient interconnect design.

Meenakshi Atkade

Pipeline

Tejas provides two pipeline types

❖ Multi-Issue In-Order
❖ Out-of-Order

Meenakshi Atkade

Features Common to Both Pipelines

❖ A unified pipeline interface exposed to the rest of the system

➢ A queue of instructions forms the input to the pipeline. The translator feeds instructions into
this queue.

➢ A function that describes the pipeline's one cycle operation. This function is called in the
principal simulation loop, where the global time is advanced by one cycle in each iteration.

❖ Branch predictor

➢ The different predictors provided are Always Taken, Always Not Taken, Bimodal, GAg, GAp,
PAg, PAp, GShare, and tournament predictors.

➢ New predictors can be easily added.

Meenakshi Atkade

In-order Pipeline
❖ Instruction Fetch

● An instruction is fetched from the input queue (that is filled by the translator). A request to the

i-cache is made, the address equal to the program counter of the instruction.

● Meanwhile, the instruction is placed in a fixed size buffer called the iCacheBuffer. The

instruction resides here until the i-cache responds.

● Once it does, the entry from the iCacheBuffer is removed, and the instruction fetch is deemed

complete.

Meenakshi Atkade

In-order Pipeline
❖ Instruction Decode

● An instruction stays in the decode stage until both its source operands are ready, and the

corresponding functional unit is available.

● Once available, depending on the type of operation, the destination register's time when ready

is set. For a load instruction, whose latency cannot be determined at decode time, the time

when ready is set to infinity.

● Branch prediction is performed in the decode stage -- a mis-prediction results in a penalty of

further instruction fetches being stalled for a predetermined number of cycles.

Meenakshi Atkade

In-order Pipeline

❖ Execute Stage An instruction occupies the execute stage until the

corresponding functional unit completes.

❖ Memory Stage If a load instruction, it occupies this stage until the memory

system responds. The corresponding destination register's time when ready is

set to the current time when the load completes.

❖ Write-back Stage Simulated as a 1 cycle operation.

Meenakshi Atkade

Multi-issue In-order Pipeline
❖ The width of the pipeline can be more than 1 (set <IssueWidth> tag in the

configuration file). The architecture implemented is based on the Intel Pentium

processor (Alpert et. al., 1993).

❖ Multiple instructions can be processed by a stage in 1 cycle. This processing

happens in-order, brought about by modeling the latches between stages as circular

queues of size equal to the pipeline width. All types of hazards are strictly handled.

Meenakshi Atkade

Out-of-Order Pipeline

ROB

LSQ

IW

Register
File

Fe
tc

h

Ex
ec

ut
e

W
ak

e-
up

D
ec

od
e

W
rit

e
B

ac
k

C
om

m
it

R
en

am
e

IW
 P

us
h

Se
le

ct

Meenakshi Atkade

Out-of-Order Pipeline

Meenakshi Atkade

IF

IF
.
.
.

IF

W

W
.
.
.

W

EX

EX
.
.
.

EX

S

S
.
.
.

S

D

D
.
.
.

D

RN

RN
.
.
.

RN

CT

CT

CT

WB

WB
.
.
.

WB

Instruction Window (IW)

Reorder Buffer (ROB)

Load Store Queue (LSQ)

IW

IW
.
.
.

IW

Instruction
Fetch Decode SelectRename IW Push Wake-up Write

Back CommitExecute

create
entry

create
entry

create
entry (for

ld/st)

remove
entry (for

ld/st)

remove
entrywakeup

select

Instruction Fetch

❖ An instruction is fetched from the input queue (that is filled by the translator).

❖ A request to the i-cache is made, the address equal to the program counter of

the instruction.

❖ Meanwhile, the instruction is placed in a fixed size buffer called the

iCacheBuffer.

❖ The instruction resides here until the i-cache responds. Once it does, the entry

from the iCacheBuffer is removed, and the instruction fetch is deemed

complete.

Meenakshi AtkadeMeenakshi Atkade

Instruction Decode

❖ Once fetched, “instruction decode” is simulated. Again, since all details are

known, only timing is simulated by advancing the clock.

❖ A Reorder Buffer entry and a Load-Store Queue entry (if memory operation)

are made at this point.

❖ Unavailability of free entries causes the pipeline to stall till entries are

available.

Meenakshi Atkade

Rename

❖ An available physical register is assigned to the destination operand.

Unavailability causes the pipeline to stall.

❖ The physical registers corresponding to the source operands are determined,

and their availability, that is, whether or not their values are available in the

register file, is ascertained.

❖ The rename logic is made up of a register alias table (RAT) and a list of

available registers.

Meenakshi Atkade

Instruction Window Push

❖ The next stage involves the creation of an Instruction Window entry.

Unavailability causes pipeline stalling.

❖ The size of the Instruction Window, Reorder Buffer and Load-Store Queue can

be specified in the configuration file.

Meenakshi Atkade

Instruction Select

❖ The select logic, in every cycle, processes the entries in the IW, looking for

ready instructions. If the operands of an instruction in the Instruction Window

are available, and a functional unit that it can execute on is available, the

instruction is issued for execution.

❖ The issue width can be set in the configuration file. The IW entries are

processed in-order -- so if more than issue width number of instructions are

found ready, the ones that entered the window earlier are given preference.

Meenakshi Atkade

Execute

❖ The instruction stays in the execute stage until the execution completes.

Based on the type of operation, execution times vary -- upon issue, an event

signalling completion of execution is scheduled for n cycles from the current

time, where n is the latency of the corresponding functional unit.

❖ The latency of the functional units can be set in the configuration file. A load

instruction can be serviced through load-store forwarding, if a store to the

same address occupies an earlier position in the queue.

Meenakshi Atkade

Wake-up

❖ Once execution
completes, the
instructions waiting for
the result (dependent
instructions) are woken up
to begin execution in the
very next cycle.

Meenakshi Atkade

Write-back

❖ The register
corresponding to the
destination operand is
marked ready.

Commit

❖ The last stage is the commit of the instruction. First, if the instruction was a
branch, a prediction is performed. The prediction is compared with the actual
outcome. If they differ, then the penalty for misprediction is simulated by
stalling all stages of the pipeline for a pre-specified (in the configuration file)
number of cycles.

❖ If the instruction being committed is a store, the Load-Store Queue is
intimated that it may allow the value to be written to the memory hierarchy.

Meenakshi Atkade

Wake-up Select Logic

❖ Wake-up Select logic allows an instruction j waiting for instruction i’s result, to

begin execution in the immediately next cycle after instruction i completes

execution. When instruction i completes, it wakes up all dependent

instructions. Its result is forwarded to the dependent instruction through the

by-pass path, essentially storage associated with the functional units.

Meenakshi Atkade

Wake-up Select Logic

❖ The wake-up signal is modelled as an event, “Broadcast Event”, as its time cannot be

statically determined. In simulation, Select is performed before the events are

processed. Therefore, the broadcast event is scheduled at the same time as the

execution complete event. Doing this would set the availability of the operand in this

cycle (the cycle when the producing instruction completed execution). This

instruction then becomes a candidate for selection in the next cycle.

Meenakshi Atkade

Two cases exist that require special handling

❖ Suppose the consuming instruction j was to be selected for execution in the

same cycle (begins execution in the next cycle) as when instruction i

completed execution. This isn’t possible with the above described solution, as

the wake-up is performed in the same cycle as i’s completion. The selection

can happen only in the next cycle, and the execution would thus begin in the

cycle after that.

Meenakshi Atkade

Two cases exist that require special handling

❖ Suppose the consuming instruction j is in the rename stage when the

producing instruction i completes execution. j looks at the register file, and

deems it’s operand unavailable. The broadcast signal sent by i touches only

the instruction window, and is thus not seen by j. Subsequently, j enters the

instruction window, and i updates the register file. Effectively, j has missed the

wake-up signal and thus, remains perpetually in the pipeline.

Meenakshi Atkade

Simultaneous Multi-Threading (SMT)

❖ The out-of-order pipeline is capable of simultaneous multi-threading. The
pipeline is provided with a decode width (configurable) number of input
queues that the translator can populate -- each queue corresponds to one
thread.

❖ The pipeline reads from these queues in round-robin fashion -- one queue
each cycle. Each instruction has a thread id field to help distinguish it when
data dependencies are handled. When one thread faces a branch
misprediction, all threads are stalled for the predefined penalty period.

Meenakshi Atkade

Reference :

https://www.cse.iitd.ac.in/tejas/overview.html

https://www.cse.iitd.ac.in/tejas/overview.html

Thank You

